
RD-A1153 669 EVALUATION AND VALIDATION (E8V) TEAM PUBLIC REPORT 1/6
VOLUME l(U) AIR FORCE WRIGHT AERONAUTICAL LABS
WRIGHT PATTERSON RFB ON V L CASTOR 36 NOV 84

UNCLA7SIFIED AFWAL TR-95 i166VOL-i F/O 14/2 N

_mhhmhhhhhhhml
smhhhhhhhhhhhl
momhhhhhhhhhhl

mhmmhhhhhhhmmlm

W o

.6
o

III1 HFF
1116 1.0.0

MICROCOPY RESOLUTION TEST CHART "
*. NATIONAL BUREAU OF STANDARDS- 1963-A ;

136 33

..... - -oill,°

IEIII~ •.

L "" °
i . . . i -. . . ;. . -. .- --? -. . .- -: - :- , " - : -: " : ? '? -" - " ' " ." '" " " ' ' "- "" " ' " " ' '" " " " " . . .2 0. ."

AFWAL TR 85-1016

EVALUATION AND VALIDATION
(E&V)

TEAM PUBLIC REPORT

Volume I

VIRGINIA L. CASTOR
E&V TEAM CHAIRPERSON
AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

30 NOVEMBER 1984

Interim Technical Report for Period
1 October 1983-30 September 1984

APPROVED FOR PUBLIC RELEASE,
0 DISTRIBUTION UNLIMITED DTIC

ELECTE
PREPARED FOR: MAY 13 1985

* ADA JOINT PROGRAM OFFICE
3D139 (FERN ST/C107) PENTAGO B

WASHINGTON, D.C. 20301

o- . .- .. . • " . •,. •. . • ., .

. - • _ ,. , o- *.

NOTICE

When Government drawings, specifications, or other data are used for any 0
purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsibility . .

nor any obligation whatsoever; and the fact that the government may have
formulated, furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as in any -
manner licensing the holder or any other person or corporation, or conveying K
any rights or permission to manufacture use, or sell any patented invention
that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) -

and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Virg!nia L. Castor Date -.
Project Engineer

FOR THE COMMANDER

A __ 22 Jan 85

I Date
RAYMOT D. BELLEM, COL, USAF

Deputy Chief
System Avionics Division
Avionics Laboratory

"If your address has changed, if you wish to be removed from our mailing _ ,

list, or if the addressee is no longer employed by your organization please
notify AFWAL/AAAF-2, W-PAFB, OH 45433 to help us maintain a current mailing-.-.
list."

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on specific
document.

'- '. " .. ., "- -." -." ' .''.-.''.'.. ., - '- -'' .- '.,, " .-'' i -. - " '," " - " .:'" ". -"."-",,. ",•-'"." . ," .-i -"0 '

...-.-.. _.-...............".,._ -,'.,'." '._" i,'"T% " ': "''": <

K - -. -- - - --.

UNCLASS IF IED S
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
is REPORT SECURITY CLASSIFICA7ION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.
N/A -"_""_"__ _ _ _ _

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWAL-TR-85-1016

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

AIR FORCE WRIGHT (Ifaoppicable)

AERONAUTICAL LABORATORIES AAAF

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

WRIGHT-PATTERSON AFB OHIO 45433-6543

8 NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Ada JOINT PROGRAM OFFICE

Bc ADDRESS Cty. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT ."3D139 (Fern St/C107) Pentagon ELEMENT NO. NO. NO. NO. 5
Washington, DC 20301

11 TITLE include Security Clamification)Evaluation and Valid- 63226 AJPO 28 53

ation (E&V) Team Public Report, Volume I
12. PERSONAL AUTHOR(S)

Virginia L. Castor- E&V Team Chairperso
13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT Yr.. Mo., Day) 15. PAGE COUNT

Interim PROM1 O 8 TO3.S.2bl 1984 November 30 494
16, SUPPLEMENTARY NOTATION

*Ada is a Registered Trademark of the U.S. Government (Ada Joint Program Office)

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. Evaluation Programming Support Environments -

Validation
Ada*

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The initial activities and accomplishments of the Evaluation and Validation (E&V) Team .-

are reported. The purpose of the E&V Task, which is sponsored by the Ada Joint Program

Office (AJPO), is to develop the techniques and tools which will provide a capability

to perform assessment of Ada Programming Support Environments (APSEs) and to determine
conformance of ,PSEs to the Common APSE Interface Set (CAIS). As this technology is
developed, it is being made available to DoD components, industry and academia. As with
all Ada-related activities, the widest possible participation in the E&V Task is

encouraged. $ 7/ / / -- •

• ~ ~~C_.,,. -

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 12 SAME AS RPT. 0 OTIC USERS UNCLASSIFIED

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
(include Area Code) "."'

Virginia L. Castor (513) 255-2446 AFWAL/AAAF

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

- % .-.-. ',% . . .* ', % .' .. • ,. -... .. " . "' . .".'

TABLE OF CONTENTS

SECTION I - Project Technical Summary --

APPENDIX A- Evaluation and Validation (E&V) Plan A-1

APPENDIX B - Requirements for Evaluation and Validation of Ada
Programming Support EnvironmentsB-1 0

APPENDIX C - DOD APSE Analysis Document C-1

APPENDIX D - Evaluation and Validation Technical Coordination

Strategy Document D-1

APPENDIX E - Evaluation and Validation Public Coordination

Strategy Document E-1

APPENDIX F - Minutes of the Evaluation & Validation (E&V)

Meeting 7-8 December 1983 F-1

APPENDIX G - Minutes of the Evaluation & Validation (E&V)
Meeting 7-8 March 1984 G-1

APPENDIX H - Minutes of the Evaluation & Validation (E&V) 0
Meeting 6-8 June 1984 H-1

APPENDIX I - Minutes of the Evaluation & Validation (E&V)

Meeting 5-7 September 1984 -i

APPENDIX J - Evaluation Criteria for Ada Compilers J-1

APPENDIX K - E&V Workshop Position PapersK-1

Acecssion For

DT1~Z~NT11S 0i,&T
D-i c T B 0

•DTIC U '
~ELECTE

' J~~~~MAY 1 3 8 9% . ..

.~..2...**

AVgets -

LIST OF FIGURES

-S
Figure A-3-1. Step 1 -Identification of APSE Components . A-16.-

Figure A-3-2. Step 2 -Identification of APSE Interface Classes A-20

Figure A-3-3. Step 3 -Identification of APSE E&V Categories A-23-

Figure A-4-1. E&V Management Structure................A-25

Figure A-5-1. E&V Relationship to Other Organizations A-32

Figure A-7-1. APSE E&V Task Work Breakdown Structure A-42

Figure A-7-2. Mapping of WBS Elements to E&V Objectives . . . A-43

Figure A-8-1. E&V Deliverables..................A-57

Figure A-8-2. E&V Meetings......................A-58

Figure A-8-3. E&V Contractual Efforts..............A-59

Figure K-1. Prototyping Scenario.................K-6

Figure K-2. Testing and Maintenance Scenario K-6 -

Figure K-3. Layered Architecture of DC K-82

Figure K-4. E&V of DCP Portability...............K-84

Figure K-5. User Interface Domain Structure for APSE E&V .. K-91

LIST OF TABLES

*Table K-1. E&V Activities. K-53

*Table K-2. Required Characteristics of ECSEK-64

Table [K-3. Tools for Transitioning from APSES to ECSES K-65

Table [K-4. Issues in APSE E&V. K-89

Table K-5. Software Methodology Components. K-109

*Table K-6. Possible Approaches to Integrating Methodology
Components Across Life Cycle Phases.K-109

SECTION I

PROJECT TECHNICAL SUMMARY 0

1.1 Introduction

This report is the first in a series of annual technical reports to be
published by the Evaluation and Validation (E&V) Team. The purpose of the
E&V Public Report is to provide an overview of the many technical accomplish-
ments of the E&V Team during the preceding fiscal year. This first report
contains information resulting from E&V activities during fiscal year 1984
(October 1983 - September 1984) which is being made available for public
review and comment. Contents of this report r flect an observation of the
E&V Team progress during the fiscal year and should not be viewed as final
representations of the technology being developed.

1.2 Background

In June 1983 the Ada Joint Program Office (AJPO) proposed the formation of
the E&V Task and a tr-service E&V Team, with the Air Force designated as
lead service. The purpose of the E&V Task is to develop the techniques and
tools which will provide a capability to perform assessment of Ada Programming
Support Environments (APSEs) and to determine conformance of APSEs to the
Common APSE Interface Set (CAIS). As the E&V technology is developed, it .-

will be made available to the community for use by DoD components, industry,
and academia as deemed appropriate by the respective organizations. In October .
1983 the Air Force officially accepted responsibility as lead service and.designated the Air Force Wright Aeronautical Laboratories (AFWAL) at Wright-

Patterson Air Force Base as lead organization. By November 1983, a comprehensive
E&V Plan was developed, and by December 1983 an E&V Team had been established,
with the first meeting held at Wright-Patterson Air Force Base. In April 1984,
an E&V Workshop was held at Airlie, Virginia. The purpose of the Workshop was
to solicit the participation of industry representatives in the E&V Task.
Many of the participants in the E&V Workshop have chosen to remain involved
in the E&V Task as Distinguished Reviewers, and have contributed significantly
to the accomplishments of the E&V Team.

1.3 E&V Meetings 0

E&V Team meetings are held quarterly, and all E&V Team meetings during the
last fiscal year were held at Wright-Patterson Air Force Base (7-8 December
1983, 7-8 March 1984, 6-8 June 1984, and 5-7 September 1984). The E&V Workshop,
which is scheduled on an annual basis, was held in Airlie, Virginia 2-6 April
1984. Communication among E&V Team members throughout the year is accomplished

primarily via the MILNET.

1.4 E&V Team Organization

The E&V Team is organized into the following five working groups:

a. Requirements Working Group (REQWG)

1-I1""

0. . ''

" " " " ".'

The REQWG is responsible for reviewing life-cycle
methodology materials to determine life-cycle issues
which should be addressed by the E&V Team; developing 0
an E&V Requirements Document; refining E&V requirements
outputs from the E&V Workshop; providing analysis of
E&V requirements to determine completeness, traceability,
testability, consistency, and feasibility; identifying
issues which may impact the development of E&V technology
but which do not necessarily correlate to APSE components; 0

and providing recommendations for development/acquisitionof E&V tools/aids.

b. Technical Coordination Working Group (TECWG)

The TECWG is responsible for performing a literature 0

search for efforts relevant to the E&V Task; developing
a Technical Coordination Strategy Document which documents
the relationship of these efforts to the E&V Task; and
providing technical presentations to the E&V Team on

these related efforts.

c. APSE Analysts Working Group (APSEWG)

The APSEWG is responsible for providing expertise on DoD
and commercial APSEs available within the DoD; providing
presentations to the E&V Team on these APSEs; identifying
existing capabilities/tests/tools associated with each 0
APSE; developing a DoD APSE Analysis Document; and moni-
toring DoD APSE Formal Qualification Testing.

d. Common APSE Interface Set Working Group (CAISWG)

The CAISWG is responsible for providing expertise on the
CAIS; providing presentations to the E&V Team on the CAIS;
providing liaison activities with the KIT/KITIA; recom-
mending specific areas of consideration for the CAIS
Validation Capability contractual effort; and developing
an APSE Validation Procedures Document.

e. Public Coordination Working Group (PUBWG)

The PUBWG is responsible for identifying professional
organizations which are technically related to the E&V
Task; developing a Public Coordination Strategy Document;
recording minutes of all E&V Team meetings; preparing E&V
Status Reports; and developing and maintaining an E&V
project reference list.

1-2["0
"::-:..'.: -2""-" *"'"".'""""'". ""..."-" '"""'" " " '""" " "." " " .. ," -":.-" ".- -"-""-.'"". .-..'""".. x * .

1.5 Document Organization

This document is organized as follows:

a. Appendix A - Evaluation and Validation (E&V) Plan

The purpose of the E&V Plan is to provide a detailed and
organized approach to the development of technology which
will be used as a basis for the E&V of APSEs. The E&V Plan
which is included in this document was developed in November -
1983 and was used as a basis for technical guidance to the 0
E&V Team throughout fiscal year 1984. The E&V Plan will be
updated annually.

r b. Appendix B - Requirements for Evaluation and Validation of

Ada Programming Support Environments

The purpose of the E&V Requirements Document is to set forth
requirements on the E&V effort; i.e., requirements against
which the organization and activities of the E&V Team can be
mapped, requirements on the E&V methods and procedures, and
requirements on what is to be evaluated within an APSE.
This document was developed primarily by the REQWG and it
will be updated at intervals specified within the E&V Plan.

c. Appendix C - DoD APSE Analysis Document

The purpose of the DoD APSE Analysis Document is to identify -
existing DoD APSEs and to provide a taxonomy of the capabili-
ties of each of these environments. The environments ilenti- .-

fied in this document include the Air Force's Ada Integrated
Environment (AlE), the Army's Ada Language System (ALS), and
the Navy's Ada Language System/Navy (ALS/N). This document
was developed primarily by the APSEWG and it will be updated
at intervals specified within the E&V Plan. Future versions
will include a comparison of the functional capabilities of
the identified environments, the evaluation criteria, and an
analysis of the application of the criteria to the existing
DoD APSEs.

d. Appendix D - Evaluation and Validation Technical Coordination
Strategy Document

The purpose of the E&V Technical Coordination Strategy Document
is to identify existing efforts/organlzations which are tech-
nically related to the E&V Task, to identify the relationships,
to identify areas of mutual benefit, to identify impact of
schedules, to identify the level of coordination which is re-
quired, and to identify issues which require resolution among
tasks. This document was developed primarily by the TECWG
and it will be updated at intervals specified within the E&V
Plan.

1-3

....................................

e. Appendix E - Evaluation and Validation Public Coordination
Strategy Document

0
The purpose of the E&V Public Coordination Strategy Document
is to facilitate the transition of E&V technology to the
public by identifying appropriate professional organizations -.
and points of contact to be notified, as appropriate, of
progress within the E&V Task. This document was developed
primarily by the PUBWG and it will be updated at intervals 0
specified within the E&V Plan.

f. Appendix F - Minutes of the Evaluation and Validation (E&V)

Meeting 7-8 December 1983

The detailed minutes of the first E&V Team meeting include S
an overview of presentations by guest speakers Major Israel
Caro (AFWAL/AAAF), who discussed the Air Force perspective
of E&V; LCDR Brian Schaar (AJPO), who discussed the AJPO's
tasking philosophy; John Kramer (Institute for Defense
Analyses), who provided a presentation on the philosophy of.
environments and who also discussed the status of the .0
Kernal APSE (KAPSE) Interface Team; and finally, Robert
Knapper (Institute for Defense Analyses), who discussed Ada
compiler validation procedures and lessons learned.

g. Appendix G - Minutes of the Evaluation and Validation (E&V)
Meeting 7-8 March 1984

The detailed minutes of the second E&V Team meeting include
an overview of presentations by guest speakers Patricia
Oberndorf (NOSC), who provided background information and
the current status of the KIT/KITIA; Timothy Lindquist -.
(Virginia Polytechnic Institute and State University), who S
presented an overview of an AJPO-sponsored effort for develop-
ing a specification technique for CAIS; and Ronnie Martin
(Georgia Institute of Technology), who described the Software
Test and Evaluation Project (STEP) which was initiated by
the Director Defense Test and Evaluation.

h. Appendix H - Minutes of the Evaluatiun and Validation (E&V)
Meeting 6-8 June 1934 -

The detailed minutes of the third E&V Team meeting include an
overview of presentations by guest speakers Elizabeth Bailey
(Institute for Defense Analyses), who provided information on S
evaluating APSE usability; Charles McKay (University of Houston),
who discussed the Johnson Space Center APSE Project; and
Raymond Szymanski (AFWAL/AAAF), who described the Integrated
Support Software System environment under development at AFWAL. -

1.-

...

• -'.," .. ".." . -. '. ". ".'..'. ". ,'- ..."........... '_ --- ---i

i. Appendix I - Minutes of the Evaluation and Validation (E&V)
Meeting 5-7 September 1984

The detailed minutes of the fourth E&V Team meeting include .
an overview of presentations by guest speakers Captain Ricardo
Contreras (HQ AFOTEC), who discussed the Air Force Operational
Test and Evaluation Center activities; and Richard Drake (IBM),
who discussed a project focused on independent testing of an
Ada compiler in support of the Submarine Advanced Combat
System (SUBACS). •

j. Appendix J - Evaluation Criteria for Ada Compilers

This document was developed by Elizabeth Kean, APSEWG Chair-
person, in support of the E&V Task. It contains a list of
evaluation criteria for Ada compilers. The criteria and 0
associated identified Ada tests are designed to complement
the Ada Compiler Validation Capability (ACVC).

k. Appendix K - E&V Workshop Position Papers

This appendix contains position papers which were submitted .0

in response to solicitation to industry for participation in
the April 1984 E&V Workshop in Airlie, Virginia. The authors
whose papers are included in this document include: Bard
Crawford (The Analytic Sciences Corporation), Paul Dobbs
(General Dynamics), Robert Fritz (Computer Sciences Corpora-
tion), Kathleen Gilroy (Harris Corporation), Kathleen Gracy
(SofTech, Inc.), Charles Hammons (Texas Instruments, Inc.),
Asha Kant (Litton Applied Technology), Robert Kirkpatrick
(Data General), Susan Mickel (General Electric Company),
James Parlier (General Dynamics), John Reddan (Syscon Corp-
oration), Amos Rohrer (EG&G, WASCI), Helen Romanowsky
(Rockwell International), Andres Rudmik (GTE Communication
Systems), Raymond Sandborgh and Michael Meirink (Sperry
Corporation), Paul Scheffer (Martin Marietta Denver Aero-
space), and James Winchester (Hughes Aircraft Company).

1.6 Conclusion

This E&V Public Report is being made available by the E&V Team in order
to solicit comments from those individuals who are not actively involved in
the E&V Task. All comments should be addressed to:

Virginia L. Castor

AFWAL/AAAF
Wright-Patterson Air Force Base
Ohio 45433-6543.

Arpanet Address: CASTOR@USC-ECLB

1-5

~~~~~~~~~~~~~............... -....... "...... . .i..........-..,.........................,..-. .... ....... ,_



Appendix A

Evaluation and Validation
(E&V) I

Plan

Version 1.0

30 November 1983

A-i



UE&V Plan
Version 1.0

30 November 1983

Table of Contents

1. INTRODUCTION. ..... ................... A-4

*1.1 Objective of the E&V Plan. ..... ............ A-4

1.2 Background ....... .................. A-6

2. SCOPE ...... ....................... A-8

3. E&V TECHNICAL APPROACH .. .................. A-13

3.1 APSE Concept. ....................... A-13
3.2 APSE E&V Classification Schema. .............. A-14

3.2.1 Step 1: Identification of APSE Components. ..... A-i5
3.2.2 Step 2: Identification of APSE Interface Classes .A-17

3.2.3 Step 3: Identification of APSE E&V Categories . A-21

4. E&V MANAGEMENT APPROACH. ................... A-24

4.1 Ada Joint Program Office. ................. A-24

4.2 Air Force, Army, Navy .. .................. A-24
4.3 E&V Team Chairperson. ................... A-24
4.4 E&V Team. ......................... A-26
4.5 E&V Team Working Groups .. ................. A-26

4.5.1 E&V Requirements Working Group (REQWG). ....... A-27
4.5.2 E&V Technical Coordination Working Group (TECWG) .A-27

4.5.3 E&V APSE Analysts Working Group (APSEWG). ...... A-28
4.5.4 E&V Common APSE Interface Set Working Group . ... A-29

(CAIsWG)
4.5.5 E&V Public Coordination Working Group (PUBWG) ... A-290

4.6 Support .. ......................... A-30

5. E&V RELATIONSHIP TO OTHER ORGANIZATIONS. .......... A-31

5.1 Air Force, Army, Navy APSE Development Efforts. ...... A-31
5.2 KIT/KITIA .. ........................ A-31
5.3 METHODMAN .. ........................ A-31
5.4 Ada Validation Organization (AVO) .. ............ A-33
5.5 User Groups and Professional Societies. .......... A-33
5.6 Standards Organizations .. ................. A-33
5.7 AJPO Director's Advisory (ADA) Board. ........... A-33
5.8 Software Technology for Adaptable, Reliable Systems . . .. A-34

(STARS)

6. E&V DELIVERABLES .. ..................... A-35

A- 2



E&V Plan
Version 1.0

30 November 1983

Table of Contents (Continued)

*7. E&V WORK BREAKDOWN STRUCTURE .. ............... A-41

7.1 1000 APSE E&V Management. ................. A-44
7.2 2000 APSE E&V Requirements. ................ A-46
7.3 3000 APSE E&V Reference Manual Development. ......... A-470
7.4 4000 APSE Evaluation Capability .. ............. A-49
7.5 5000 APSE Validation Capability .. ............. A-51
7.6 6000 APSE E&V Tools/Aids. ................. A-53

*7.7 7000 APSE E&V Support .. .................. A-55

8. E&V SCHEDULES/MILESTONES .. ................. A-56

9. E&V REFERENCES .. ....................... A-60

A-3S



E&V Plan

Version 1.0
30 November 1983

1. INTRODUCTION

1.1 Objective of the E&V Plan

The purpose of the E&V Plan is to provide a detailed and 0

organized approach to the development of technology which will be
used as a basis for the Evaluation and Validation (E&V) of Ada

Programming Support Environments (APSEs). The E&V Plan will be

updated on an annual basis throughout the duration of the E&V
Task.

This document is organized as follows:

- Section 1: INTRODUCTION

• Section 1 presents: (1) the objective of the E&V •

Plan; and (2) historical background information
which led to the establishment of the E&V Team.

-Section 2: SCOPE S

* Section 2 presents the scope of the E&V Task

through delineation of the E&V Task objectives.

- Section 3: E&V TECHNICAL APPROACH

* Section 3 provides an overview of the technical

approach to the development of E&V technology by
defining an initial E&V Classification Schema. •

- Section 4: E&V MANAGEMENT APPROACH

* Section 4 provides the management structure for •

the E&V Task and identifies specific tasks for
Working Groups within the E&V Team.

A-4
. ..

. . .



E&V Plan
Version 1.0

30 November 1983

- Section 5: E&V RELATIONSHIP TO OTHER ORGANIZATIONS .

* Section 5 describes the relationship of the E&V

Task to other DoD and technical organizations.

- Section 6: E&V DELIVERABLES

* Section 6 presents a description of all of the

deliverables expected from the E&V Task.

- Section 7: E&V WORK BREAKDOWN STRUCTURE

* Section 3 presents a Work Breakdown Structure

which delineates all of the activities to be S
accomplished in the E&V Task.

- Section 8: E&V SCHEDULES/MILESTONES

* Section 8 presents schedules and milestones

associated with the E&V Task.

- Section 9: E&V REFERENCES

* Section 9 provides a list of references which are

used within this document.

A-5

o . ..



E&V Plan
Version 1.0

30 November 1983

1.2 Background

In 1975 the High Order Language Working Group (HOLWG) was
formed under the auspices of the U.S. DoD. It consisted of
representatives from the Army, Air Force, Navy, Marines and other -"-

defense agencies, with the goal of establishing a single high
order language for new DoD Embedded Computer Systems (ECS). The
technical requirements for the common language were finalized in
the STEELMAN [I] report of June 1978. International competition
was used to select the new common language design. In 1979,
after review by approximately eighty teams (representing DoD
organizations, industry, academia and NATO countries), and after
intensive analysis by the three Services and other defense
agencies, the DoD selected the design developed by Jean Ichbiah
and his colleagues at CII-Honeywell Bull. The language was named
Ada in honor of Agusta Ada Byron (1815-1851), the daughter of
Lord Byron and the first computer programmer.

Early in the development process it was realized that the
acceptance and the benefits derived from a common language could
be increased substantially by the development of an integrated
system of software development and maintenance tools. The
requirements for such an Ada programming environment were stated
in the STONEMAN [2] document. STONEMAN identifies the APSE as
support for "the development and maintenance of Ada application
software throughout its life cycle."

The Army and Air Force have begun separate developments of
APSEs; the Navy is in the process of procuring an APSE
development, which will be based upon the Army's APSE. The Amy
APSE has been designated the Ada Language System (ALS); the Air
Force APSE has been designated the Ada Integrated Environment
(ALE); and the Navy APSE has been designated the Ada Language
System/Navy (ALS/N).

The Ada Joint Program Office (AJPO) was formed in December
1980. It is the principal DoD agent for development, support and
distribution of tools, common libraries, and coordination of Ada.
The AJPO will coordinate all Ada efforts within DoD to ensure
their compatibility with the requirements of other Services and
DoD agencies, to avoid duplicative efforts and to maximize
sharing of resources.

The KAPSE Interface Team (KIT), a tri-serivce organization
which is chaired by the Navy under the guidance of the AJPO, was
established in late 1981 as the result of a Memorandum of

A-6

S1>2"



E&V Plan
Version 1.0

30 November 1983

Agreement (MOA) signed by the Deputy Under Secretary of Defense
and the Assistant Secretaries of thd three services. The
objective of the KIT is to define a standard set of Kernel Ada
Programming Support Environment (KAPSE) interfaces to ensure the -

interoperability of data and the transportability of tools S
between conforming APSEs. The Common APSE Interface Set (CAIS)
developed by the KIT provides the virtual operating system on
which tools run, as well as the minimum set of command, edit and
similar functions required to transport tools from one CAIS to
another. The KAPSE Interface Team from Industry and Academia
(KITIA) was established in early 1982. The KITIA consists of T
volunteer representatives from industry and universities who
provide expertise relevant to the definition of the CAIS.

In addition to the KIT/KITIA development of the CAIS, which
will require the development of a validation capability to
determine conformance, other efforts have contributed to the

foundation of the E&V Task. One such effort was the formation of
the Ada Validation Organization (AVO), under the direction of the

AJPO. The AVO is responsible for the development of an Ada
Compiler Validation Capability (ACVC) which is currently used to
ensure that Ada compiler developers have correctly implemented

the standard Ada language (ANSI/MIL-STD-1815A-1983). A second

effort which is fundamental to the E&V task is the National
Bureau of Standards' Taxonomy for an APSE [31, which
systematically defines tool capabilities for a full APSE. A
third effort, at the Air Force Wright Aeronautical Laboratories
[41, provided an initial APSE evaluation questionnaire that can
be used as a baseline from which to develop a more refined, 0
comprehensive, and generic set of questions. Finally, previous
and current efforts, sponsored by the AJPO, at Virginia
Polytechnic Institute and State University [5] have addressed

issues associated with validation in APSEs.

In June 1983 the AJPO proposed the formation of the E&V Task S
and a tri-service APSE E&V Team, with the Air Force designated as
lead service (61. In October 1983 the Air Force officially
accepted responsibility as lead service on the E&V Task [71. The

purpose of the E&V Team is to develop the techniques and tools
which will provide a capability to perform assessment of APSEs

and to determine conformance of APSEs to the CAIS. As the E&V S
technology is developed, it will be made available to the
community for use by DoD components, industry, and academia as
deemed appropriate by the respective organizations. The E&V Task

will not provide an E&V Organization which will be responsible
for the execution of E&V procedures on all APSEs.

A- 7

_1
. . . . . . . .. .. .... .. .... ........................ - +
*- .":.,:.-* "- -'.i -'-..-- ...-..- '?- :...- - '':.-.-** _- *. ....' -.. i: .:-' -..- . .:.- ._-. --.- -_-._ _---.'



E&V Plan
Version 1.0

30 November 1983

2. SCOPE

The overall goal of the E&V Task is to develop and provide to
the community the technology for the Evaluation & Validation of
APSEs. The E&V Task, sponsored by the AJPO, will be accomplished
by an E&V Team which consists of representatives from the Air 0
Force, Army, Navy and other selected agencies. The Air Force has
assumed responsibility as lead service for this effort and the

Air Force Wright Aeronautical Laboratories (AFWAL) has assumed
responsibility as the lead Air Force organization.

In order to accomplish the goal of the E&V Task, eleven
specific objectives have been identified. Note that each
objective is preceded by "0-" (indicating Objective) and a unique
number. This nomenclature is provided to enable illustration of
a direct mapping of the E&V Work Breakdown Structure elements
(provided in Section 7) to the following specific objectives:

- -: Develop Requirements for APSE E&V

• As a prerequisite to the development of APSE E&V

technology, E&V requirements must be specified.

The development of E&V requirements will be based
upon examination of APSE related issues such as
life-cycle methodologies, human engineering
aspects, software engineering practices, etc. The
E&V requirements which are developed will be used
to guide the E&V technical effort. .

-0-2: Develop APSE E&V Classification Schema

* The technical approach to classifying APSE

components will be based upon an APSE E&V
Classification Schema. This schema is comprised
of three major factors: (1) identification of APSE

components; (2) identification of associated APSE
interface areas for each APSE component; and (3)

identification of the appropriate evaluation or
validation capability associated with each APSE

component. Section 3 (E&V TECHNICAL APPROACH) of
this document provides additional detail on the

APSE E&V Classification Schema which will be used

A--8

• " . .. ". " '' . : . . .: '. ' ." " " . - " . . .'. " . ." ". " .C ". " " , , ," ". " " ." ". ". • . . " . . . . . . .



E&V Plan
Version 1.0

30 November 1983

initially by the E&V Task. This schema will be
refined during the E&V Task.

- 0-3: Identify and Classify APSE Components 0

• APSE components will be identified and classified

based upon the existence of criteria and standards
as well as the existence of metrics capabilities

for those components. The identification and S
classification of APSE components will be in
accordance with the APSE E&V Classification
Schema.

- 0-4: Develop APSE Evaluation Capability *0

• An evaluation capability will be developed for all

APSE components for which there exist no formal

standards (i.e., MIL-STD, ANSI, etc.). The
evaluation capability for some components will be .
provided through established metrics, whereas the
evaluation capability for other components may be
limited to a detailed questionnaire.

* As a first step toward achieving this objective,

previous AFWAL efforts in the area of APSE 0

evaluation will be reviewed for applicability as a
baseline for generic evaluation criteria. Because
evaluation criteria will be largely dependent upon
the defined functionality of each tool, an

analysis will be made of the functionality of
various tools provided in the DoD APSEs to S

determine commonality among tool names and tool
functions. This analysis will be closely
coordinated with the National Bureau of Standards
(NBS) effort in defining a taxonomy of APSE tool

features. Ongoing standards development
activities will be reviewed as a potential source _O
of 'evaluation criteria and public presentation of
the findings of the analysis will be used to
solicit input from industry and academia so as to
generate a sound and realistic expansion of the
developed criteria.

A-99

".' A-9

,',,'.• '-*', .... .,-..... . .".-.....-.....,.--......... ..- ",.' . , .'



E&V Plan
Version 1.0

30 November 1983

- 0-5: Develop APSE Validation Capability

* A validation capability will be developed for the

CAIK , which is currently being developed by the

KIT/KITIA, and which will become a MIL-STD. If

other APSE related standards are established
(i.e., possibly DIANA) appropriate validation

capabilities will be developed. Examination of
the current validation procedures and Ada Compiler
Validation Capability (ACVC) test suite utilized

by the Ada Validation Organization (AVO), as well

as procedures implemented by ANSI and ISO, will be
used as a baseline. The APSE validation studies

performed by Virginia Polytechnic Institute and
State University, and the current Formal
Qualification Tests (FQT) being applied to the ALS
KAPSE (and those which must be similarly developed S
for the AIE KAPSE) provide an available baseline
from w, Izh a validation capability may be
developed.

- 0-6: Monitor the Formal Qualification Testing (FQT) of .
DoD APSEs

* The development of the Army's ALS has progressed
to the stage of FQT, and the Army is currently ---

utilizing a trn-service team to assist in the -
monitoring of the ALS testing. Such tri-service

testing cooperation is also envisioned by the Air
Force for its testing of the AlE and the Navy for
its ALS/N. The FQT test suite developed by each
service will provide a useful baseline for

examining the various tool/user/interface aspects 0
of an APSE, and a realistic approach to
determining the capabilities of the DoD APSEs.

- 0-7: Develop Evaluation & Validation Tools and Aids

* As the requirements for E&V are determined,

various software tools/aids will be identified as

essential to the E&V effort. Such tools/aids

A-10



E&V Plan
Version 1.0

30 November 1983

include test sets, test scenarios, data reduction
capability, and other designated means of
automated support. As these tools/aids become -
more clearly defined, an assessment will be made "
to include such capability. Existing tools/aids
which are applicable to the E&V Task will be
considered for use. New tools/aids which are
determined to be essential for the APSE E&V Task
will be assessed for possible contractor
development. One specific validation capability
which will be developed through a contractual
effort will be the CAIS Validation Capability
(CVC). The existing Ada Compiler Validation
Capability (ACVC) will be included as part of the
E&V Tools/Aids.

- 0-8: Develop Procedures for Implementation of E&V

* The E&V Task will develop and provide the
technology and procedures by which E&V of APSEs
will be accomplished. It will not provide an E&V S
Organization which will be responsible for the
execution of evaluation and validation procedures
on all APSEs. The E&V procedures will be based
upon E&V requirements, APSE standards, evaluation
criteria, validation capability, and existing E&V -

tools/aids. Once the procedures and mechanisms -
are fully developed, the APSE Validation execution
responsibility will be t rans it ioned to an
appropriate validation organization. The APSE
Evaluation capability will be transitioned to the
community for use by DoD components, industry, and
academia. 6

- 0-9: Provide Initiative and Focal Point With Respect to
APSE E&V

* There currently exists a need to provide a focal
point for APSE developers and users with regard to
information about E&V of APSEs. APSE E&V
questions arise frequently within professional
societies and user groups. A forum is needed in

A-11

S o



E&V PlanVersion 1.0

30 November 1983

which APSE E&V questions can be addressed and

discussed, and in which APSE E&V information can
be disseminated throughout the Ada community.

* The E&V Team will provide a focal point for APSE

E&V for the Ada community. Public reports on the •
results of this APSE E&V Plan will be made
available to professional societies such as AdaTEC
and AdaJUG. This is in keeping with the AJPO
philosphy of public exposure. The E&V task is the
lead DoD effort w!th reeard to APSE E&V. In this
rt the E&V Team wi.1 participate in, and S
assist where possible, other programs connected
with APSE E&V. Such programs include the
KIT/KITIA, METHODMAIN, and international
development efforts.

-0-10: Solicit Industry/Academia Participation in the

E&V Task

* In order to encourage industry/academia

participation in the E&V effort, an E&V Workshop .
will be conducted on an annual basis throughout

the duration of the E&V Task. Information on the
E&V Workshops will be made publically available
and participants will be selected on the basis of
position papers which are written relevant to the
technical aspects of the E&V Task. ,0

- 0-11: Promote Community Use and Acceptance of the E&V
Effort

* Use of the E&V technology developed through this

task will provide for an orderly progression of
technology insertion into environments. The E&V
technology thus developed will be extendable to
other software development efforts, thereby
maximizing the economic benefits of the E&V task S
products and minimizing the cost within DoD and
industry of doing E&V related work.

A-.12

.".- °*S

I_



E&V Plan
Version 1.0

30 November 1983

3. E&V TECHNICAL APPROACH

3.1 APSE Concept 0

The APSE, as depicted by the STONEMAN document, provides a
virtual interface between the user of the APSE and the particular
host system upon which the APSE is installed. This interface is
designed to be machine and operating system independent; in
effect, it defines an Ada virtual machine whose features are •
available on all actual host machines. The purpose of the APSE
is to provide an environment for the design, development,
documentation, testing, management, and maintenance of embedded
computer software, written principally in the Ada programmming
language.

The initial efforts of the E&V Task are based upon the concept
of an APSE structure as defined by the original STONEMAN
document. STONE.MAN paints a broad picture of the needs and
identifies the relationships of the parts of an integrated APSE.
Allowance will be made for the possible modification of that APSE
structure based upon a future revised STONEMAN document. .

.ii

S .

A-13

7.



E&V Plan 0
Version 1.0

30 November 1983

3.2 APSE E&V Classification Schema

The technical approach to the E&V effort requires that APSE
components be identified and classified based upon a well-defined
Classification Schema. The schema which is initially proposed in
this E&V Plan consists of three basic steps: 0

- Step 1: Identification of APSE Components;

- Step 2: Identification of APSE Interface Classes; and

- Step 3: Identification of APSE E&V Categories.

The following sections present additional detail on each of
these steps, as well as an illustration of the result of each
step. The E&V Classification Schema which is presented in this
document is expected to be further refined during the E&V Task.

A-14

A- 14

.. . . . . . . . . . . . . . . . . . . .- -o...- .



.-. -- -------7
0

E&V Plan
Version 1.0

30 November 1983

3.2.1 Step 1: Identification of APSE Components

For the purpose of the E&V Classification Schema, APSE
components are defined to be features of the APSE. The National
Bureau of Standards Taxonomy of Tool Features for the APSE [3]
presents a hierarchical arrangement of software tool features.
The first (highest) level is an abstract level which encompasses
all of the features below it. The second level includes the
basic processes of the APSE (i.e., input, output, and function).
The third level includes the classes of tool features (i.e.,
subject, control, transformation, static analysis, dynamic
analysis, management, user output, and machine output). The
fourth and fifth levels include specific APSE features.

Initially, as a basis for Step 1, the National Bureau of
Standards Taxonomy will be used to identify APSE components.
However, as additional E&V Requirements are specified during the
E&V Task, the list of APSE components will be expanded to
reflect: (1) additional APSE features; and (2) finer granularity
of previously identified APSE features.

This first step of the Classification Schema results in a
hierarchical structure which can be illustrated by a list of APSE
components, identified through an appropriate numbering scheme.
Figure 3-1 illustrates the format for the list of APSE components
which result from Step 1.

, . "S . '

A-15

". ..,



E&V Plan
Version 1.0

30 November 1983

Compoent0

Component 1.

Component 1.1.1-

Compnent1.1.

Component 1.2.

Component 1.21

Component 1.2.

Component 1.2.2.1

Figure A-3-1. STEP 1I IDENTIFICATION OF APSE COMPONENTS

A- 16



E&V Plan
Version 1.0

30 November 1983

0

3.2.2 Step 2: Identification of APSE Interface Classes

Following the identification of APSE components, the particular
APSE interface classes which are associated with each APSE
component must be identified. At present, four classes of APSE 0
interfaces have been identified as being applicable to APSE
components. These four classes of interfaces are the Common APSE
Interface Set (CAIS), Ada Packages, Inter-tool Data Interfaces,
and the User/APSE Interface. These classes of APSE interfaces
may be further refined during the E&V Task.

-CLASS I Interfaces: (CAIS)

* The CAIS is being developed by the KIT/KITIA as

the foundation for Interoperability and .
Transportability (I&T) of data and tools. The CAIS
provides the virtual operating system on which the
tools run, as well as the minimum set of command,
edit and similar functions needed to move tools
from one CAIS to another. Tools written in Ada,
using only the minimum guaranteed characteristics 0
of the CAIS packages, will be portable to all
APSEs providing conforming implementations for the
CAIS packages used by the tool.

* The E&V Task will check implementation conformance ....,,
and address the two way communication across this S
interface.

* Examples of CLASS I CAIS functionality are

Input/Output, Data Management, and Process
Management.

- CLASS 2 Interfaces: (Ada Packages)

* Certain Ada Packages will be established as common

or a standard over time that are not part of the -0
CAIS. These packages may interface directly with
the CAIS or may use other standard packages in
their implementation. Each package can then be
considered an additional layer of abstraction
between the CAIS and the User.

A-1 7

, . . . ..... - . .. . .. . ................-.......... ,...,,,....:...'::.* .* ..... .



E&V Plan
Version 1.0

30 November 1983

* The E&V Task willi address the two way

communication across both the external visible
part and the implementation interface. As part of
the implementation portion, the E&V task will
check to ensure that the package meets the various
aspects of Interoperability and Transportability •
as developed by the KIT/KITIA.

* Examples of CLASS 2 packages would be packages

provided in a Math Package Library.

- CLASS 3 Interfaces: (Inter-tool Data Interfaces)

* As sets of tools are identified which use similar

data, inter-tool data interface commonality will
be established.

* The E&V Task will address the inter-tool data

interfaces, with respect to the data types and the
operations on that data.

* Examples of CLASS 3 Inter-tool Data interfaces are

DIANA and, potentially, any file format (data
types and operations on those files); and such
information as performance and statistical data
concerning the operation and performance of the
APSE and individual tools.

- CLASS 4 Interfaces: (User/APSE Interfaces)

* The user looks at the APSE from the outside and

sees particular tool interfaces as well as an APSE 0
SYSTEM.

* The E&V Task will address both the user/tool

interface and the user's SYSTEM view of the APSE.

* Exai~ples of CLASS 4 interfaces would be "Control _

C" always having the same meaning, or all editors
using the same subset of functions, or the same
data naming structure or Command Language.
Anything that the user sees from the time of

A-18

... ".



E&V Plan

Version 1.0

30 November 19B3

log-on to log-off, including performance, would
fall into this category. CLASS 4 would include

overall completeness of an APSE in terms of its
functionality as well as the ease of transition

from one life-cycle phase oriented tool set to S
another.

As the second step in the E&V Classification Schema, each APSE

component will be examined to determine which APSE interface

classes are affected by each component. Figure 3-2 illustrates

the format for the 2-dimensional matrix which results from Step 2

of the E&V Classification Schema.

A-1.0

... ':.



E&V Plan
Version 1.0

30 November 1983

APSE INTERFACE CLASSES

APSE COMPONENTS 1 2 3 4

Component 1

Component 1.1

Component 1.1.1

Component 1.1.2

Component 1.2

Component 1.2.1

Component 1.2.2

Component 1.2.2.1

Figure A-3-2. STEP 2 -IDENTIFICATION OF APSE INTERFACE CLASSES

A- 20



E&V Plan
Version 1.0

30 November 1983

3.2.3 Step 3: Identification of APSE E&V Categories

For the purpose of the E&V Classification Schema, the term .2

"Evaluation" represents a method of assessing the quality of APSE-
components for which no specific standard (i.e., MIL-STD, ANSI, 0
etc.) exists, or for which a standard may exist but there is no
known capability to measure conformance to that standard. The
term "Validation" represents a method of determining conformance
to a standard which is applicable to an APSE (e.g.,
MIL-STD-1815A, CAIS, etc.).

The determination of what methodology (i.e., evaluation or
validation) is then based on whether a standard exists and
whether a means of checking conformance to that standard also
exists. Different levels of conformance checking exist and that
leads to a paritioning of validation methodology into non-formal . .
and formal techniques. Based on this notion of standards and S
conformance checking, the following categories are provided for
determining appropriate assessment methodology.

- Category A:

* If no standard for an APSE component exists and no

technique of evaluating conformance has been
developed, then the component requires subjective
evaluation.

- Category B:

* If no standard for an APSE component exists, but a
method for assessing the quality (i.e., a metrics S
capability) exists, then the component requires

objecti ve evaluat ion.

- Category C: -

* If a standard for an APSE component exists but
there is no existing method for determining
conformance to that standard, then the component
is in an intermediate category.

A-21

i- -l .- .' 3 " .. -. " ;' ? -.' .' , ...'. ,- .. .. " .' ', " --. '- " , -' ,- .' .-, -. " -' -.'. -. -- '. .., .. ., .- - .. .. . .- --. , .-. , - - i-- 9 '

-., A _ ' _ -:. ,'-".'__ . ." ., _ ,- .. . .' ' ." .' ."' , - " . . " " " ' " " .". ' -"," ' .- ' .. '"". "" """



E&V Plan
Version 1.0-

30 November 1983

- Category D:

* If both a standard for an APSE component and a

method for determining conformance to that -
standard exist, then the component requires
validat ion.

- Category E:
r0

* If a standard for an APSE component and a purely

formal technique for determining conformance to
that standard exist, then the component requires
formal validation.

When these categories are applied to APSE components the
appropriate quality assessment technology for each component type
may be easily determined.

As the third step in the E&V Classification Schema, each APSE S
component/APSE Interface Class couple will be examined to
determine which APSE E&V Category is most appropriate, based upon
existing standards/criteria and metrics capabilities. Figure 3-3
illustrates the format for the 3-dimensional matrix which results
from Step 3 of the E&V Classification Schema.

The result of categorizing APSE components into the appropriate
APSE interface areas and E&V categories is primarily to determine
what standards and assessment technique-, have to be developed in
an independent manner. In other words, the E&V Classification
Schema allows the decision to pursue the development of
standards, validation methods, or formal methods independently of _
what course may be chosen for other components even in the same
area of application.

A-22. . .

S.. .. . . . . ' . . .. •. •• , - . . . .- . ." ",. . ' .".' . ' "•."". ' o . . "• "....... .'..-,.......... .. "." . "... • > .........- • •



E&V Plan
Version 1.0

30 November 1983

APSE E&V CATEGORIES

A B C D E

AopSen Copnet

Componnt 1.

0 ~ ~ ~ ~ ~ ~~~opnn Fiue1.1.SE 1 -IETFCAINO AS & ATGRE

ComponeA- 231

Copnn 1.

Copnn ..



... -r.. . . .

E&V Plan 0

Version 1.0
30 November 1983

4. E&V MANAGEMENT APPROACH

Figure 4-1 depicts the E&V management structure. Each of the
components is identified in the following sections.

4.1 Ada Joint Program Office

The Ada Joint Program Office (AJPO) sponsors the E&V task. All
E&V Team activities are coordinated with the AJPO through the E&V

Team Chairperson. The AJPO requires that the status of the E&V
task be briefed to the AJPO, as well as to the three service S
representatives, at quarterly Ada tri-service reviews.

4.2 Air Force, Army, Navy

The Air Force has assumed responsibility as lead service on the S
tri-service E&V Task. However, the status of the E&V Task is

briefed to the AJPO and the service representatives at quarterly
Ada tr-service reviews. At these reviews, each service
representative has the opportunity to request additional

information on the E&V Task and to recommend modifications to the
proposed E&V Task planning. S

4.3 E&V Team Chairperson

The Air Force Wright Areonautical Laboratories (AFWAL) has
assumed responsibility as the lead Air Force organization for the -

E&V Task. The E&V Team Chairperson is an AFWAL representative
who is authorized to work directly with the AJPO in the execution

of the E&V Task. The E&V Team Chairperson is required to brief
the status of the E&V Task to the AJPO and services at quarterly

Ada tri-service reviews. The E&V Team Chairperson is fully
responsible for providing technical direction to the E&V Team 0
members and for coordinating all of the E&V activities.

A-24

. ..



E&V Plan
Version 1.0

30 November 1983

0--

0>

400
LOL6

C)L6d 1IM CD

dc

A--



E&V Plan
Version 1.0

30 November 1983

4.4 E&V Team

The E&V Team is composed of representatives from the following
organizat ions:

0

- Air Force

• Air Force Systems Command

• Air Force Logistics Command

* Air Force Communications Command

- Army

- Navy

- Other Selected Agencies

E&V Team meetings are convened quarterly and E&V Team members
are responsible for representing the technical issues/concerns of
their respective organizations at these meetings. Similarly, E&V
Team members are responsible for reporting the status of the E&V
Team activitics to their repective organizations.

4.5 Z&V Team Working Groups

In order to coordinate all of the activites to be accomplished
within the E&V Task, the E&V Team will be partitioned into five
working groups. The identification of these working groups, and
their associated areas of responsibility, are delineated in the
following sections. These working groups are subject to change
during the life of the E&V Task. Each working group will have a
designated Chairperson and Vice-Chairperson. It will be the
responsibility of each working group Chairperson to coordinate
the activities of the working group with the E&V Team
Chairperson. In addition, each working group Chairperson will be
required to brief the status of the respective working group at
every E&V Team meeting.

A-26

.... .... .... .........--- ----.......-....



0

E&V Plan
Version 1.0

30 November 1983

4.5.1 E&V Requirements Working Group (REQWG)

The REQWG shall be responsible for performing the following
tasks:

!

- Review life-cycle methodology materials and determine
life-cycle issues which should be addressed by the E&V
task.

- Develop an E&V Requirements Document against which the .
E&V Reference Manual will be developed.

- Refine E&V Requirements outputs from the E&V Workshop.

- Provide analysis of E&V Requirements to determine
completeness, traceability, testability, consistency

and feasibility.

- Identify issues which may impact the development of E&V
technology but which do not necessarily correlate to
APSE component s.

- Provide recommendations for development/acquisition of
E&V tools/aids through the development of an E&V
Tools/Aids Requirements Document.

- Prepare position papers through the duration of the E&V

Task which address issues on E&V Requirements.

4.5.2 E&V Technical Coordination Working Group (TECWG)

The TECWG shall be responsible for performing the following
t asks:

- Perform literature search for efforts relevant to the
E&V task.

-Develop , a Technical Coordination Strategy Document 0
which will:

* identify related technical efforts;

A-27

,~~~~~~~~~~~~~~~.,.......,,.-.....,.....,....:.:.., .. ,.....: ................ ... ,,..... .... ............. .. ... : .:-



E&V Plan
Version 1.0

30 November 1983

* identify relationships between the E&V Task and

each of the related tasks;

* identify areas of mutual benefit to the tasks;

* identify impact of schedules;

* identify level of coordination required;

* identify issues which require resolution to the

mutual benefit of the tasks involved.

- Provide technical presentations to the E&V Team on

these related efforts.

- Prepare position papers throughout the duration of the
E&V task which address particular aspects of the E&V 0
Task with related tasks/efforts.

4.5.3 Z&V APSE Analyst* Working Group (APSEWG)

The APSEWG shall be responsible for performing the following
tasks:

- Obtain expertise on DoD and commercial APSEs available
within the DoD.

- Prepare presentations to the E&V Team on these APSEs,
each APSE presentation increasing in level of detail.

- Identify existing capabilities/tests/tools associated
with each APSE which will assist the E&V effort.

- Develop evaluation criteria to be applied to existing
DoD APSEs.

- Provide analysis of application of evaluation criteria
to DoD APSEs.

- Monitor the DoD APSE Formal Qualification Testing.

- Prepare position papers throughout the duration of the
E&V Task which address particular aspects of the DoD

A-28

i . • -



E&V Plan 6
Version 1.0

30 November 1983

APSEs in relation to the E&V effort.

4.5.4 E&V Common APSE Interface Set Working Group (CAISWG)

The CAISWG shall be responsible for performing the following
tasks:

- Emphasize study on the CAIS.

- Review the development of the CAIS and identify areas
of possible concern to E&V.

- Monitor the DoD APSE Formal Qualification Testing.

- Provide presentations to the E&V Team on the CAIS.

- Provide liaison activity to the KIT/KITIA.

- Review existing DoD KAPSE interface tests and augment
to provide initial test set for CAIS MIL-STD Version 1.

- Recommend specific areas of consideration for the CAIS 0
Validation Capability Statement of Work.

- Develop a Validation Procedures Document which will

provide details on the validation procedures to be
implemented by orga nizat ions to which the CAIS
validation responsibility will be transferred.

- Prepare position papers throughout the duration of the

E&V Task which address particular aspects of the CAIS
as relevant to E&V.

4.5.5 E&V Public Coordination Working Group (PUBWG)

The PUBWG shall be responsible for performing the following
tasks:

- Identify professional organizations which are
technically related to the E&V effort.

- Develop a Public Coordination Strategy Document which

A-29



E&V Plan
Version 1.0

30 November 1983

provides an approach as to how such public coordination
will be performed.

- Record minutes of all E&V Team meetings.

- Coordinate the various E&V papers/documents which shall
be included in the annual E&V Public Report.

- Prepare a set of E&V viewgraphs and corresponding text
to allow E&V Team members to present the status of the
E&V Task at public meetings. S

- Prepare E&V status reports for publication in related
journals and newsletters.

- Catalog all issues related to the E&V effort.

- Develop and maintain an E&V project reference list.

4.6 Support

Contractor support for the E&V task will be obtained for the
purpose of development, publication, distribution, and
configuration management of all APSE E&V documentation. .

Additional contractor support will be obtained for the purpose of
developing software tools/aids to be used for evaluation and
validation of APSEs. Such support will include development of a
CAIS Validation Capability (CVC) which will be used to determine
conformance of an APSE to the CAIS, which is currently under
development by the KIT/KITIA.

A-30

S

:.- .. .:... : .: .. :. : : .. :. : , , .: :. .:. .... .. . ..: .-,: ... ., : .... . . . ... .... ,..... . ,. .



- -- -"-.-- ' .-. '

E&V Plan
Version 1.0

30 November 1983

5. E&V RELATIONSHIP TO OTHER ORGANIZATIONS

Figure 5-1 illustrates the relationship of the E&V Task to
other organizations.

5.1 Air Force, Army, Navy APSE Development Efforts

The Army and Air Force have begun separate developments of an

APSE; the Navy intends to procure a development which will be

based largely on the Army's APSE, but which will be tailored to

meet specific Navy requirements. The contractor for the Army's

ALS is Soflech, Inc.; the contractor for the Air Force's AIE is
Intermetrics, Inc.; and the contractor for the Navy's ALS/N is

yet to be determined. The E&V Team will interact with the three
services and their respective APSE contractors for information
exchange and consultation, particularly in the area of Formal
Qualification Testing (FQT).

5.2 KIT/KITIA

The purpose of the KIT and KITIA, under the direction of the
AJPO, is to develop a standard set of KAPSE interfaces to ensure
the transportability of tools and the interoperability of data
between conforming APSEs. The E&V Team will interact with the -"-"

KIT and KITIA for information exchange, particularly in the area
of APSE interfaces, and for initial review of E&V work prior to

public exposure. Several members of the E&V Team are also
members of the KIT/KITIA. The Chairperson of the KIT is also a
guest member of the E&V Team.

5.3 )IETHOD1AN

The purpose of the ETHODMAN effort, under the direction of the

AJPO, is to develop requirements and encourage the development of

methodologies to support the entire software development
life-cycle. One of the goals of the METHODMAN effort will be the
construction of a complete set of tools to support a selected
methodology. The E&V Team will interact with the ETHODMAN
effort for information exchange, particularly in the areas of
tool definitions, evaluations, and validation. The Chairperson
of the METHODMAN effort is also a guest member of the E&V Team.

A-31

Li~ ~ .......... ........... . . .............. . .. ,.. . : .. :_



E&V Plan
Version 1.0

30 November 1983

-2M.

L.) E -L

z C) 0 -

C)
CD z

-,-

-J-

C

z .........

C=

LI
D)

4M 0

Lon

CD0

A-32

.S • i



E&V Plan
Version 1.0

30 November 1983

5.4 Ads Validation Organization (AVO)

The purpose of the AVO, under the direction of the AJPO, is to
ensure that compiler developers have correctly implemented the 0
standard Ada language (ANSI/MIL-STD-1815A-1983). The AVO has
established formal procedures for validating Ada compilers and
mechanisms by which the validation procedures are executed. The
E&V Team will interact with the AVO for information exchange,
particularly in the area of validation requirements and
procedures. The compiler validation capability will be S
incorporated within the E&V technology developed by the E&V Team.

5.5 User Groups and Professional Societies

It is anticipated that AdaTEC, the Ada-JOVIAL Users Group S
(AdaJUG), and Ada Europe will provide valuable contributions to
the APSE E&V effort. The E&V Team has no formal relationship
with these groups; however, the E&V Team will use some or all of
these groups as regular forums for the presentation of reports
and technical results of the APSE E&V effort, and will solicit
inputs from members. S

5.6 Standards Organizations

As with the User Groups and Professional Societies, there is no

formal relationship with the Standards Organizations. However, S
because the E&V Task is based upon validation of KIT/KITIA
developed standards, the E&V Team must be familiar with the
procedures for enforcement of standards. Knowledge of how
standards are currently enforced will provide useful guidelines
for the direction of the E&V Task.

5.7 AJPO Director's Advisory (ADA) Board

The purpose of the ADA Board is to advise the director of the
AJPO with regard to policy and issues related to the Ada Program.
The E&V Team will interact with the ADA Board for information 0
exchange on issues related to the APSE E&V effort.

A-33. . . . .-.. .



E&V Plan
Version 1.0

30 November 1983

5.8 Software Technology for Adaptable, Reliable Systems (STARS) ,

The STARS Program, under the direction of the DoD, was
established to develop and promote new software technology. The
E&V effort will be closely coordinated with the STARS tasks. E&V
Team liaisons will be provided to the STARS Program to ensure
coordination of technical objectives as well as scheduled
milestones.

A-34

-- ' --

A- ,o34.

S"% " ,,



-~ -. tY- 
-

E&V Plan 0
Version 1.0

30 November 1983

0
6. E&V DELIVERABLES

This section delineates each of the deliverables of the E&V
Task. Working as a whole, the E&V Team members, the technical
consultants, and the technical support contractors, are -- .
responsible for the development of all documents. However, in
order to more clearly reflect the areas of emphasis for the E&V
working groups and support personnel, each document description

spe-ifies the individuals who are primarily responsible for the
development of that document.

- E&V Plan

* The E&V Plan provides a detailed and organized

approach to the accomplishment of the E&V Task.
The E&V Plan reflects the management approach, the S
technical approach and the schedules for all E&V
activities. The E&V Plan is considered to be
evolutionary and will be updated on an annual
basis to reflect possible proposed modifications
to the approach and/or schedules and to reflect .
accommplishments during the previous year. The -0
E&V Team Chairperson is primarily responsible for
the development of the E&V Plan.

- E&V Public Report

* The E&V Public Report, which will be made

available to the public on an annual basis, will
provide information on the acitivities of the E&V
Team. The E&V Public Report will contain the
recorded minutes of all E&V Team meetings as well
as all position papers prepared by E&V Team
members. The E&V Public Report will also contain
E&V position papers written by industry/academia
participants in the annual E&V Workshop, as well
as all documentation which results from the E&V
Workshop. The Public Coordination Working Group _•
(PUBWG) is primarily responsible for the format
and collation of all entries in the E&V Public
Report.

A-35
0

- ~ Z ~t... . .2.2..2 . - ~ . . ~.L.22 . . . ::



E&V Plan
Version 1.0

30 November 1983

0

- E&V Project Reference List

" The E&V Project Reference List will provide a list

of documents used as reference material by the E&V 0
Team. Corresponding with each specified document
will be a snyopsis which identifies the relevance
of that document to the E&V Task. The E&V Project
Reference List will be expanded throughout the

duration of the E&V Task. The Public Coordination
Working Group (PUBWG) is Drimarily responsible for

the development of the E&V Project Reference List.

- E&V Technical Coordination Strategy Document

" The E&V Technical Coordination Strategy Document
will identify other ongoing DoD/contractual
efforts which are technically related to the E&V
Task. This document will provide a strategy for
coordination between the E&V Task and each
identified effort. It will specify level of
coordination, points of contact, impact of
schedules of one effort on another, and benefits
to be gained by each effort as a result of such
coordination. This document will be updated
throughout the duration of the E&V Task in order
to incorporate efforts which are initiated during " "
this time. The Technical Coordination Working

Group (TECWG) is primarily responsible for the

development of the E&V Technical Coordination
Strategy Document.

E&V Public Coordination Strategy Document

The E&V Public Coordination Strategy Document will

identify public organizations/activities with
which coordination should be established with the

E&V- Task for the benefit of information exchange.
This document will provide a strategy for
coordination between the E&V Task and each of

these organizations/activities. It will specify
level of coordination, points of contact, and

A- 36 S



E&V Plan
Version 1.0

30 November 1983

procedures by which the plans and accomplishments
of the E&V Task are presented to the
organizations/activities. This document will be
updated throughout the duration of the E&V Task in
order to incorporate organizations/activities
which are initiated during this time. The Public
Coordination Working Group (PUBWG) is primarily
responsible for the development of the E&V Public
Coordination Strategy Document.

- E&V Requirements Document

• The E&V Requirements Document will identify the

requirements by which the E&V technology will be
developed. E&V requirements will be based upon
review of life-cycle methodologies, software
engineering practices, human engineering aspects
associated with software development, and other
issues relevant to APSEs. The Requirements Working
Group (REQWG) will be primarily responsible for
the development of the E&V Requirements Document.

- DoD APSE Analysis

• The DoD APSE Analysis will provide information on
the features provided in the DoD APSEs. This
analysis will reflect areas of commonality as well
as areas of discrepancy in the manner in which
functions are performed. Each revision of the DoD
APSE Analysis will provide additional detail on
the comparative analysis. The APSE Working Group
(APSEWG) is primarily responsible for the
development of the DoD APSE Analysis.

- APSE Validation Procedures Document

*The APSE Validation Procedures Document will
provide details on the validation procedures to be
implemented by organizat ions to which the
validation execution responsibility will be

A-37

. . .......

* ~ *..s.



E&V Plan
Version 1.0

30 November 1983

transferred. Initial versions of the APSE
Validation Procedures Document will reflect
general validation procedures common to existing
validation organizations. Later versions of the
APSE Validation Procedures Document will include S
APSE specific validation procedures, such as those
applicable to the CAIS. The CAIS Working Group
(CAISWG) is primarily responsible for the
development of the APSE Validation Procedures
Document.

- E&V Configuration Management Plan

* The E&V Configuration Mangement Plan will specify

the procedures which must be followed in order to 0

perform Configuration Management of all E&V
documents generated by the E&V Task as well as all
tools/aids developed by the E&V Task. The

Configuration Manaagement Plan will be consistent
with current Configuration Management policies
implemented by the Avionics Laboratory at
Wright-Patterson Air Force Base. The E&V

Technical Support Contractor is primarily
responsible for the development of the E&V

Configuration Management Plan.

- E&V Classification Schema Document

* The E&V Classification Schema Document will be

used to define the approach for classification of
APSE components. The initial E&V Classification a
Schema is provided in Section 3 (TECHNICAL
APPROACH). However, as the E&V Task begins to
identify and classify APSE components, the initial
schema will be refined. The E&V Technical Support

Contractor is primarily responsible for the
development of the E&V Classification Schema S

Document.

- E&V Reference Manual

A-38

, -.- .. ...-.-... . . ..... . -... .... . . .



E&V Plan
Version 1.0

30 November 1983

* The E&V Reference Manual will provide information

on the classification of APSE components. For each
identified APSE component, the E&V Reference
Manual will identify the corresponding
criterion/standard associated with that APSE
component, as well as the metrics capability (or
questionnaire entries) which are used to access
that APSE component. Throughout the E&V Task, the
E&V Reference Manual will be expanded to reflect
finer granularity in the identification of APSE
components as well as newly acquired/developed •

metrics capabilities. The E&V Technical Support
Contractor is primarily responsible for the
development of the E&V Reference Manual.

- E&V Guidebook

* The E&V Guidebook is a companion document o the

E&V Reference Manual. It provides information to
the user as to how to implement the

tools/techniques identified in the E&V Reference
Manual for appropriate application of the E&V
technology. The E&V Technical Support Contractor
is primarily responsible for the development of
the E&V Guidebook.

- E&V Tools/Aids Requirements Document

* The E&V Tools/Aids Requirements Document will

specify the requirements to be used for the
selection of E&V tools/aids to be
acquired/developed as part of the E&V Task. This
document will also include the rationale for
establishing priorities for the
acquisition/development of such tools/aids. The
Requirements Working Group (REQWG) is primarily
responsible for the development of the E&V _

Tools/Aids Requirements Document

-E&V Tools/Aids

A-39

AS

......................................................... ... ... .... ... ... ... ... ... ...



E&V Plan
Version 1.0

30 November 1983

• .*

* As the E&V Task Progresses, APSE components will
be classified and existing E&V capabilities for
those components will be identified. The E&V
Tools/Aids Requirements Document developed by the
REQWG will be used to specify and prioritorize E&V 0
tools/aids which must be developed. Based upon
the E&V Tools/Aids Requirements Document,
additional contractual efforts will be initiated

for the development of such E&V tools/aids.

- CAIS Validation Capability (CVC)

* The CAIS Validation Capability (CVC) will provide

the validation capability to determine APSE
conformance to the CAIS as specified in the future S
CAIS MIL-STD. Initial efforts to provide such a
capability will consist of review and adaptation
of existing DoD KAPSE interface Formal

Qualification Tests by the CAIS Working Group
(CAISWG). However, a separate contractual effort
will be used to develop a full validation

capability.

--

A-40 .

~.. . ... . . . . ... .. ... . ".. " . . -. ' .'/ ." .},.i..... .', . '



E&V Plan
Version 1.0

30 November 1983

!4

@

7. E&V WORK BREAKDOWN STRUCTURE

Figure 7-1 depi:ts the areas of E&V Task responsibility which
include the following:

- APSE E&V Management

- APSE E&V Requirements

- APSE E&V Reference Manual Development S

- APSE Evaluation Capability

- APSE Validation Capability

- APSE E&V Tools/Aids "

- APSE E&V Support

A Work Breakdown Structure (WBS) is provided for each of the
above areas of responsibility. G

Figure 7-2 illustrates the relationship of each WBS element to
the specific objectives identified in Section 2 of this document.

A-41

- o

S

S

A-41 " '

po



S E&V Plan
Vers ion 1. 0I ~I ~d i11 30 November 1983

ILI
.c V%> 1. 6M > SL b

oo

-~ u~ ~ En

66 86 66 ~ -

in I" fnon

Ii IA-42



E&V Plan
Version 1.0

30 November 1983

E&V
OBJECTIVE

WBS
ELEMENT 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11

1000: 1100 X
1200 X
1300 X
1400 X
1500 X
1600 X

2000: 2100 X x X X
2200 X
2300 X
2400 X

3000: 3100 X
3200 X
3300 X
3400 X
3500 X
3600 X
3700 - x

4000: 410C x
4200 X
4300 X
4400 -X --

5000: 5100 x
5200 X
5300 X
5400 X
5500 X

6000: 6100 X
6200 X
6300 x X
6400 X
6500 X
6600 X
6700 X
6800 1 x X I.I

7000: 7:00 X
7200 X
7300 X
7400 X

Figure A-7-2. MAPPING OF WBS ELEMENTS TO E&V OBJECTIVES 0

A-43



E&V Plan
Version 1.0

30 November 1983

0

7.1 1000 APSE EIIV Kanagemnent,

- 1100 APSE E&V Systems Management

* This WBS element provides for management of the

APSE E&V Task. It further provides for a Public

Report to be prepared every year. The Public

Report will cover the technical accomplishments of

the APSE E&V Task for the prior year and will be S
suitable for distribution in hard copy.

- 1200 APSE E&V Planning

* Th is WBS element provides for the planning

necessary to follow through and complete the APSE

E&V Task. It further provides for the undating of
the APSE E&V Plan on an annual basis.

- 1300 APSE E&V Reviews

* This WBS element provides for the preparation and

presentation of the E&V Task progress to the Ada
Joint Program Office and the three services at the S
quarterly Ada tri-service Reviews.

1400 APSE E&V Workshops

* This WBS element provides for the organization and

management of an E&V Workshop, which will be

conducted on an annual basis throughout the

duration of the E&V Task. The purpose of the E&V

Workshop will be to encourage industry/academia

participation in the E&V effort. Participation in

the E&V Workshop will be limited. Information on
the proposed E&V Workshop will be made publically
available and participants will be selected on the

basis of position papers which are written
relevant to the technical aspects of the E&V Task.

A-44

.2..

. . . . . . . ..... . ... .- . .. . . . . . . . ...-. ,. .".. ."i"i." "

~~~~~~~...?.....-.i.... . .-.. . .... i. .".... .,- . .--- °- .?.. - . """ i' - -??-"?.
' - ' ' '

E&V Plan
Version 1.0

30 November 1983

!0
- 1500 APSE E&V Public Coordination

* This WBS provides for the development of a
strategy by which the E&V Team will maintain 0
coordination with the public on the progress of
the E&V Task. This WBS includes preparation of
E&V articles to be submitted for publication. It
also includes preparation of materials which may
be utilized by the E&V Team members for public
presentation on the E&V Task. S

- 1600 APSE E&V Technical Coordination

* This WBS provides for the development of a

strategy by which the E&V Team will maintain
coordination with other related technical efforts.
This WBS includes: (1) the identification of
related tasks; (2) the identification of the
relationshipstbetween the E&V Task and each of the
related tasks; (3) the Identification of areas of
mutual benefit to the tasks; (4) the impact of
task schedules; (5) the identification of level of
coordination required; and (6) the identification
of issues which require resolution to the mutual
benefit of the tasks involved.

A-45

S

............................ .. ,•..-.......................................-.-...i-".....-'..,'... <Lj',''-I..' "'-. "'-.'L. -'.:."- -Z.L--.-.-.i-X - -

E&V Plan
Version 1.0

30 November 1983

7.2 2000 APSE E&V Requirements

- 2100 APSE E&V Resource Review .

• This WBS element provides for the review of

literature and documentation applicable to APSE

E&V requirements. Such literature and

documentation will include subjects such as

evaluation and valieation studies, standards
enforcement, tool functionality, APSE

requirements, etc.

- 2200 APSE E&V Requirements Development

* This WBS element provides for the development of

requirements for APSE E&V. These requirements
will be documented in an E&V Requirements Document
which will be revised throughout the duration of

the E&V Task as new requirements are identified. .

- 2300 APSE E&V Requirements Analysis

• This WBS element provides for the analysis of APSE

E&V Requirements developed under WBS element 2200.
This analysis will be conducted to determine
completeness, traceability, testability,
consistency and feasibility.

- 2400 APSE E&V Special Studies

• This WBS element provides for any technical

analysis or study not mentioned elsewhere.
Specifically included are studies resulting in
methods for assessing the risk associated with
achieving levels of APSE E&V and cost benefit
analysis that will provide a quantitative means to

assist in making recommendations and decisions
concerning implementat ion.

.

A-46 '" ' / :

%t

E&V Plan
Version 1.0

30 November 1983

7.3 3000 APSE E&V Reference Manual Development

- 3100 APSE E&V Classification Schema Development

• This WBS element provides for the development of a

general schema which will be used as a basis for
classification of APSE components. This schema
will initially be based upon the classification
schema provided in Section 3 of this document.

- 3200 Identification of APSE Components

• This WBS element provides for the identification 6

of APSE components, based upon the functionality
and interface areas presented in Section 3 of this
document.

-3300 Identification of Criteria/Standards for APSE S
Components

• This WBS element provides for the identification
of existing criteria or standards for each of the
APSE components identified under WBS 3200. If no
criteria or standards exist for a particular APSE
component, then this WBS will result in
recommendations for the development of criteria
against which that component may be evaluated.

- 3400 Identification of Metrics for Criteria/Standards

Z This WBS element provides for the identification

of existing metrics for the criteria/standards
identified under WBS 3300. If no metrics exist
for a particular criterion or standard, then this
WBS will result in recommendations for the
development of metrics associated with that
criterion or standard.

A-47

%-

E&V Plan
Version 1.0

30 November 1983

3500 E&V Classification

* This WBS element provides for the classification

of all APSE components identified under WBS 3200,
based upon the schema developed under WBS 3100 and
the associated criteria/standards and metrics
identified under WBS 3300 and WBS 3400,
res pe ct ively.

- 3600 E&V Reference Manual 0

* This WBS element provides for the documentation of

the results obtained in WBS 3500 in an E&V
Reference Manual.

- 3700 APSE E&V Migration Analysis

* This WBS element provides for a continuing

analysis of the results obtained under WBS 3500. -

One function of this WBS will be to provide

recommendations for future standardization of any
APSE component for which there exists a sufficient
metrics capability and for which the
standardization of such a component is deemed .-
beneficial to the overall Ada program. In

addition, this WBS will result in recommendations

for the development of tools/aids which will
provide or enhance metrics capabilities for
identified APSE components.

A-48

. -.. "..-,
S. -

'~... •. -............-................ ,.-........ -..... :.....:. i .- :-:;'|-,:: .- -~~ ~~~~~ ~ ~~~~~? ---.-- i: . . " " ". """".-" ." "' ' " ""*. "

E&V Plan
Version 1.0

30 November 1983

7.4 4000 APSE Evaluation Capability

- 4100 APSE Evaluation Criteria Analysis

This WBS element provides for the review and

analysis of existing programming environment

evaluation criteria to determine applicability to
the E&V Task. This WBS includes review of the
Formal Qualification Tests for the existing DoD
APSEs. This WBS element also includes review of
ongoing standards development activities as a
source for criteria development.

-4200 APSE Formal Qualification Test Monitoring .0

* This WBS element provides for the monitoring of
the FQT procedures performed on each of the DoD
APSEs. Such monitoring will be performed on a
non-interference basis, with possible extension to

a supporting FQT function.

- 4300 APSE Evaluation Criteria Development

* This WBS element provides for the development of

evaluation criteria which will be applied to
existing DoD APSEs. The evaluation criteria
developed will be based upon the results of WBS
elements 4100 and 4200 and will be included within
the E&V Reference Manual developed under WBS 3000.

- 4400 DoD APSE Analysis

* This WBS element provides for the application of -
the evaluation criteria developed in WBS element
4300 to existing DoD APSEs. It also provides for
an analysis of the features of tools available on
each of the DoD APSEs to determine areas of
commonality and discrepancy. This analysis will -9-

A-49

E , ,,.. . ,_,2 .' ..'',_''', .,'''2 '2 '2 t'c '. "'_ ,_.' .' ."'.2 ._.' .2 :3 .ff ' "., .*"- '. .. _- .*"_:. '_ .:'.' ,: " " '.9,

E&V Plan
Version 1.0

30 November 1983

be performed in concert with an analysis of the
NBS Taxonomy ef fort.

A-50

E&V Plan
Version 1.0

30 November 1983

7.5 5000 APSE Validation Capability

- 5100 APSE Validation Analysis

* This WBS element provides for the review and

analysis of existing APSE validation studies to
determine applicability to the E&V task. This WBS

includes review of validation test suites, such as

the ACVC and KAPSE FQT tests.

- 5200 APSE Validation Procedures Analysis

This WBS element provides for the review and

analysis of existing validation procedures to

determine applicability to the E&V Task. This WBS
includes review of ACVC procedures, as well as

procedures implemented by such organizations as

ANSI and ISO.

- 5300 APSE Validation Procedures Development

* This WBS element provides for the development of

validaticn procedures to be implemented by
organizations to which the validation execution

responsibility will be transferred.

- 5400 APSE Validation Development

This WBS element provides for the development of

validation procedures which will be applied to

existing DoD APSEs.

- 5500 APSE Validation Application

* This WBS element provides for the application of

the validation procedures, developed in WBS 5400,

A-51
0

E&V Plan
Version 1.0

30 November 1983

to existing DoD APSEs. This WBS also provides for
the analysis of results obtained from the
application of the validation procedures. .

A-52

E&V Plan
Version 1.0

30 November 1983

7.6 6000 APSE E&V Tools/Aids

-6100 APSE E&V Tools/Aids Objectives and Requirements

*This WBS element provides for the identification
of objectives, criteria and requirements to be
used for the selection of E&V tools/aids to be
acquired/developed as part of the E&V Task. These
tools/aids will be used for initial evaluation
and/or validation of existing floD APSEs.

-6200 APSE E&V Tools/Aids Development Plans

*This WBS element provides for the analysis
necessary to recommend that specific E&V
tools/aids be developed. It further provides for
making the recommendation, and developing plans
for the development and acquisition of these
tools/aids.

-6300 APSE E&V Tools/Aids Development

*This WBS element provides for the development and

acquisition of the recommended APSE E&V tools/aids
which will be used for initial evaluation and/or
validation of existing DoD APSEs. This WBS

includes development of the CAIS Validation
* Capability (CVC).

-6400 APSE E&V Tools/Aids Development Review

*This WBS element provides for the monitoring of

the. APSE E&V tools/aids development and
part ic ipat ion in the APSE EiV tools/aids
development review process. It further provides
for the reporting of the results of monitoring and

reviews.

A-S53

acqureddevlopd aspar oftheEbV ask ThseS

...................... ntia evluaio
and/or . aiato f.xsin o.ASs

- 6200 APSE~~~~ .b . ol/Ad DvlomntPan

*

E&V Plan

Version 1.0
30 November 1983

- 6500 APSE E&V Tools/Aids Application and Analysis

* This WBS element provides for the overseeing of

the application of the E&V tools/aids. It further

provides for the development of guidelines for the
application of the tools/aids and the analyses of
the results produced by their application.

- 6600 APSE E&V Tools/Aids Maintenance S

* This WBS element provides for the maintenance of

the APSE E&V Tools/Aids after they are developed.

- 6700 APSE E&V Tools/Aids Modification

* This WBS element provides for the modification of

the APSE E&V Tools/Aids which may be required to
correct inadequacies in the first development or "
to respond to changing requirements.

- 6800 Guidebook for APSE E&V Technology Application

* This WBS provides for the development of a

Guidebook for the application of the E&V

technology developed in the E&V Task. The E&V
Guidebook will correspond to use of the E&V
Reference Manual developed under WBS 3000. This
Guidebook will be intended for public use in S
application to any existing support environment.

A-54

.:- -- .- .- -..-.......- i-'i-

E&V Plan
Version 1.0

30 November 1983

7.7 7000 APSE E&V Support

- 7100 APSE E&V Publications

* This WBS element provides for the publication and

distribution of APSE E&V requirements, policy,
strategy and other applicable documents.

- 7200 APSE E&V Configuration Management 0

* This WBS element provides for the Configuration

Mangement of all APSE E&V documents generated and
all tools/aids developed in the APSE E&V program.

- 7300 APSE E&V Data Management

* This WBS element provides for the maintenance,

storage and updating of all documentation and data
in the APSE E&V program. It further provides for
the distribution of all data in the APSE E&V
program.

7400 APSE E&V Meeting Support

* This WBS element provides for the technical

support required in planning, preparing,
conducting and reporting on formal APSE E&V
meetings. These meetings are held for the purpose
of establishing E&V requirements and an E&V

capability.

A-55

_6

,. .. " , ... +'- ..'.-.-' 'lil',
" - - ' ' - ' ' ' ' ' ' ' - - ' - ' - ' - i - - '' -

E&V Plan
Version 1.0

30 November 19.3

B. 94V SCHEDULES/MILESTONES

Figure 8-1 illustrates the schedules and milestones associated
with the E&V deliverables defined in Section 6 of this document.

Figure 8-2 illustrates the schedules associated with E&V
related meetings.

Figure 8-3 illustrates the schedules associated with E&V
contractual efforts.

A-56°

• +

S

A-- +56

.

E&V Plan 0
Version 1.0

30 November 1983

L) O

- < - .< , - -

- - - - - - - - - - - --- 000

o~~~& ow ,

,.J _. < r14

- >4 >--- -

-5'-

0- f-it- _

' • L.-. ."-

I--. _
31.1

a' a .

21 am M 0 3. 20 .s Q V

04 04 00 * o s-s A

-1 -, w & W w "i4 A" W w L

A-57

EAV Plan
Version 1.0 S

30 November 1983

t)' co, en< I ' "---
,"ar. <1 <1j

iS

-- 1 '1 _ _

U- <4_ < <_ '1

_ _ '1'"

2. "-2- ' -"

cc "

-

"o) '.O° .

zz

A-58

- -- - ,--.,!

F.&V Plan
Version 1.0 S

30 November 1983

co

co)

-- -- - <-

4.33

CO ff•

X.-

i

- . - - - - - - - - - - - - - - - -- ,

cc

C., -

kc

cc W.

cc0 t_

Ln W

cc-

,- zI

IJ

Id-j

.

E&V Plan
Version 1.0

30 November 1983

9. E&V REFERENCES

- [I] Departm-it of Defense, Requirements for High Order
Computer Programming Languages -- "STEELMAN", Defense

Aovanced Research Projects Agency, June 1978.

- [2] Buxton, J.N., Requirements for Ada Programming
Support Environments -- "STONEMAN", U.S. Department of

Defense, February 1980.

- [3] Houghton, R., "A Taxonomy of Tool Features for the

Ada Programming Support Environment (APSE)", U.S.
Department of Commerce, National Bureau of Standards,
December 1982, Issued February 1983.

- [4] Castor, V., "Criteria for the Evaluation of ROLM S
Corporation's Ada Work Center", Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB,
January, 1983.

- [5] Kafura, D., Lee, J.A.N., Lindquist, T., Probert,
T., "Validation in Ada Programming Support S
Environments", Virginia Polytechnic Institute and State
University, December, 1982.

- [61 OUSD (R&E) Memorandum for the Commander, U.S. Army
Materiel Development and Readiness Command (DRCDE-SB), . _
Chief of Naval Material (MAT oY), Commander Air Force S
Systems Command (ALR); "Subject: Proposed Evaluation
and Validation Tasking", 15 Jun 83.

- [7] HQ Air Force Systems Command (ALR) Letter to AJPO,
"Subject: Proposed Evaluation and Validation Tasking
(Your Ltr, 15 Jun 83)", 7 Oct 83.

A-60

. . . .

.

APPENDIX B

REQUIREMENTS FOR EVALUATION AND VALIDATION
0

OF

ADA PROGRAMMIING SUPPORT ENVIRONMENTS

Version 1.0
17 October, 1984

Prepared by

Evaluation and Validation Team -

Requirements Working Group

for the
Ada Joint Program Office

B-1-

Table of Contents

1.0 INTRODUCTION B-3
i 1.1 Purpose Of The Evaluation And Validation Task B-3

1.2 Document Purpose And Scope B-3
1.3 Goals B-4
2.0 GENERAL REQUIREMENTS AND CRITERIA FOR THE EVALUATION

METHODOLOGY B-4
2.1 Requirements On The Evaluation And Validation Team B-4
2.2 Requirements On Evaluation And Validation

Methodology B-5
3.0 APPROACH B-6
3.1 Addressing Requirements On The Evaluation And S

Validation Team B-6
3.2 Addressing Requirements On Technology Development B-7
4.0 REQUIRED APSE EVALUATIONS AND VALIDATIONS B-8
4.1 Introduction B-8
4.2 Attribute Definitions B-9 - -

4.3 Required Component EvaluationsB-12 S
4.3.1 Command Language InterpreterB-13
4.3.2 Compiler B-17
4.3.3 Configuration ManagementB-29
4.4 Required Macroscopic EvaluationsB-34
4.4.1 Software Development Methodology Support B-34
4.4.2 Life-cycle SupportB-35 -
4.4.3 Application Specific Requirements B-35
4.4.4 Intertool Interfaces B-36 -
5.0 QUALITY GUIDANCE FOR E&V TECHNOLOGY B-36 "

6.0 REFERENCES B-37

APPENDIX A ACRONYM LIST...................B-38

APPENDIX B COMMAND LANGUAGE INTERPRETER QUESTIONS . . . B-39

APPENDIX C COMPILER QUESTIONS B-45

APPENDIX D CONFIGURATION MANAGEMENT QUESTIONSB-86 B

APPENDIX E E&V TEAM REQUIREMENTS WORKING GROUP
MEMBERSHIP B-92 -

B-2

O

1.0 INTRODUCTIO

1.1 Purpose Q. It E.a.Luation And alidatio-Qn Talk

The purpose of the Evaluation and Validation (E&V) Task is to
develop the technology which will be used as the basis for the
evaluation and validation of Ada Programming Support Environments
(APSEs). Validation is the process of determining conformance of
an APSE or APSE component to existing standards. For example, Ada
compilers are currently required to undergo validation by the Ada
Validation Organization (AVO) to insure conformance to the Ada
language standard (MIL-STD-1815A). In the future, validation may
encompass additional standards such as the Common APSE Interface
Set (CAIS) developed by the KAPSE (Kernel APSE) Interface
Team/Industry Academic (KIT/KITIA). Evaluation is the process of .0
assessing characteristics or attributes of an APSE or APSE
component for which there are no standards. Examples of such
attributes include usability, efficiency, and maintainability. In
the absence of standards, such attributes are free to vary across
different APSE implmentations. Consequently, these attributes are
of interest to users in selecting from among different APSE's .
because they contribute to differences in suitability for
different applications or methodologies as well as to differences

* in overall quality.

It is anticipated that the primary benefits of E&V will be to
encourage the development of quality APSE's, to promote
interoperability and transportability, and to provide users and
developers with a uniform and comprehensive means for assessing
and selecting APSE's suitable for their specific applications and
methodologies.

S

1.2 Document Purpose And Scop

The purpose of this document is to set forth requirements on
the E&V effort. This document is intended for use by the APSE E&V
Team and by the support contractor(s) in developing technology for
the evaluation and validation of APSEs.

This document contains three categories of requirements. One
category, contained in Section 2, consists of requirements on the
E&V Team. These represent requirements against which the
organization and activities of the E&V Team can be mapped. They
take the form "The E&V Team will..." (e.g., "The E&V Team will
develop a validation capability to determine conformance of an
APSE to all applicable standards"). A second category, also
contained in Section 2, consists of requirements on the E&V
methods and procedures. These take the form "The E&V technology
shall be..." (e.g., "The E&V technology shall be objective"). The %
third category, contained in Section 4, consists of requirements
on what is to be evaluated and takes the form "The 'X' attribute
of the 'Y' component shall be evaluated" (e.g., "The usability of
the compiler shall be evaluated").

B-3

:-:'~~~~~~~~.°. - .- ..°- '-'-:

This document does not contain requirements pertaining to the
implementation of E&V technology since these are viewed as falling 0
within the realm of DoD policy and outside the scope of the E&V
Team. This document also does not contain requirements on APSE
tools, only on the evaluation and validation of those tools.

1.3 Goals

The near term goals are to provide a preliminary or initial
set of APSE E&V requirements and a minimal set of E&V tools that
can be used to assess APSE components. In addition, a feedback
mechanism by which both comments on the tools and requirements and
results of applying the tools can be submitted and dissiminated
will be developed. It is anticipated that, in the near term, the
E&V requirements will be used on existing APSEs and APSE
components rather than causing redesign of those components.

The primary long term goal is to establish an interactive
database of the results of the performance of E&V on all available
APSEs and APSE components. It is expected that this database
could be used by both the potential users and the designers of
APSE tools. In addition, anyone performing E&V could immediately
nake the results available to the entire community using the
database. It is anticipated that the existence of the E&V
database, along with the E&V technology, would have a long term S
positive effect on the quality of the available Ada support
software.

2.0 GENERAL RE,..IREMENIS AND CRITEIA EV TEYALUATIQ
M• .l • °-

This document addresses requirements on the E&V Team and on the
development of E&V technology. It does not address requirements
on the application of E&V technology.

2.1 Requirements On Th& Evaluation Anid Validation. Ijam

2.1.1 The E&V Team will develop a validation capability to
determine conformance to all applicable standards. This includes
the development of tools and aids (e.g., test sets, test
scenarios, data reduction capabilities) and other designated means
of automated support.

2.1.2 The E&V Team will develop an evaluation capability to assess
attributes of APSE components for which no standards exist. This
includes the development of tools, aids and other designated means

-B-4

. !

a . a . S

of automated support.

the components and attributes to be evaluated or validated. These

requirements will take the following form: "The abc attribute of
the xyz component shall be evaluated". Section 4.0 of this
document contains illustrative sets of requirements for three
major APSE components (compilers, configuration managers, and
command language interpreters).

2.1.4 The E&V Team will develop an APSE E&V Classification Schema
to guide the generation of specific requirements. For the near
term, this schema will take the form of a two-dimensional matrix,
with APSE components along one dimension and a list of attributes
along the other dimension. Version 1.0 of this matrix appears in
Section 4.0

2.1.5 The E&V Team will establish mechanisms for disseminating E&V
technology to the public.

2.1.6 The E&V Team will solicit industry and academic
participation in the development of E&V technology.

2.1.7 The E&V Team will promote community use and acceptance of S
E&V technology.

2.1.8 The E&V Team will provide a focal point with respect to APSE
E&V.

2.1.9 The E&V Team will maintain expertise on DoD-sponsored APSEs
and commercially-sponsored APSE's available within the DoD. 5

2.1.10 The E&V Team will make recommendations to the DoD on policy
decisions affecting the application of E&V technology.

2.1.11 The E&V Team will establish a capability for the
independent evaluation of E&V technology to determine and improve
the validity and value of the technology which is developed. -

2.1.12 The E&V Team will establish E&V product quality guidelines.

2.2 R Qn Evlation And Vaidation M -d"ogX

In outlining requirements on the E&V technology, the following
convention is adopted to distinguish between 'requirements" and
"criteria". Requirements (shalls) distinguish themselves in that
fulfillment of the requirement can be clearly observed, while this
may not be true for criteria (shoulds).

2.2.1 APSE E&V requirements and the corresponding technology shall
be applicable to current APSEs (in order to yield useful results
for the short-term), and shall evolve with future APSEs.

2.2.2 E&V shall address individual APSE components and APSEs as a
whole.

B-5

- -" .,.-•

2.2.3 E&V technology shall be objective. This means that the
technology should not be biased toward specific APSE design
features or concepts.

2.2.4 E&V technology shall be developed and specified in such a
way so as to be repeatable. This means that, within the bounds of
statistical sampling error, the same results shall be obtained by
two or more evaluations (or validations) conducted independently.

2.2.5 E&V technology shall be comprehensive in that it will
consider all important aspects of the component being evaluated or
validated.

2.2.6 E&V technology should be relevant, meaning that it should
focus on attributes which are important in the development and
support of large-scale, embedded systems. S

2.2.7 E&V technology shall be tailorable to meet the needs and
priorities of specific application areas and organizations.

3.0 APPROACH

3.1 Adressing ReuLirements Qn Tb Evaluation Aad Validati n Team

Although the entire E&V Team is responsible, the primary means of
addressing the requirements outlined in Section 2.1 is through the
five E&V Team Working Groups.

Requirements 2.1.1 and 2.1.2 are general requirements which serve
as the overall charter for the E&V Team. The Common APSE
Interface Set Working Group (CAISWG) is currently focusing on CAIS .
validation while the Requirements Working Group (REQWG) is
focusing on evaluation. Requirements 2.1.3 and 2.1.4 are the
responsibility of the REQWG and the E&V support contractor
respectively.

Requirements 2.1.5, 2.1.6, and 2.1.7 are the responsibility of the
Public Coordination Working Group (PUBWG).

Requirement 2.1.8 is the responsibility of the Technical
Coordination Working Group (TECWG).

Requirement 2.1.9 is the responsibility of the APSE Analysts
Working Group (APSEWO). 0

Requirements 2.1.10, 2.1.11, and 2.1.12 were addressed by the
April, 1984 E&V workshop in Airlie Virginia, and the entire E&V

* Team is responsible for continued attention to these needs.

B-6

,. ,, o ,°u~ .. °.o°,o ..0
--A..~.-~* .~ -. - .. -~~-~.- _________________________________

3.2 Addressing Requirements Qn Technolog Devlopmnt

Requirement 2.2.1 will be addressed through the incremental
development of E&V technology. An incremental approach will be
followed in developing requirements on the E&V Team, requirements
on the methods used, and requirements on what is to be evaluated.

For example, the current organizing scheme for generating
requirements on what is to be evaluated is contained in Section 4.
This scheme takes the form of a component/attribute matrix in
which the components represent generic tools existing in current
environments. While it will probably continue to be the case that
requirements for what is to be evaluated or validated will take
the general form of the 'X' attribute of the 'Y' component, the
nature and priorities of the attributes are likely to change as
will the nature of the components. As an example of a change in
the priority of attributes, the ability to interface with other
tools will be very important initially since a developing APSE may
not include all functionality at an early stage of development;
this attribute will become less important over time as more
comprehensive toolsets appear. As an example of a change in the
nature of the components, with increasing integration of toolsets, Scomponents such as compilers will no longer exist as separable
entities.

The current list of components (compiler, configuration
manager, command language interpreter) provides examples of the
approach taken in generating requirements on what is to be
evaluated. These components and their sub-components were 0
selected on the basis of expertise within the Team to make an
initial attempt at decomposing each component into sub-components
and generating questions (contained in the Appendix) for these
based on the list of attributes. Thus, the components chosen do
not in any way represent a minimally sufficient APSE.

The current organizational scheme has major deficiencies 6
which limit its value for the short term and, even more so, for
the long term. There are, for example, alternative ways of
decomposing a tool. Not all compilers, command language
interpeters, and configuration managers are organized and, hence,
decomposable in the ways that are implied by Section 4.0. In
addition, identifying the components as generic tools is of
limited value, even for the short term. Across different
environments, one will not find a common mapping of functions to
tools (i.e., tools by the same name do not carry out exactly the
same set of functions and the same function is not necessarily
contained within a common generic tool).

The longer-term needs for E&V involve the evolution of this 0
document and the development of capabilities that focus on the
higher-level units provided by increasing levels of integration.
The classification scheme which serves to drive the generation of
requirements for E&V will focus more on these higher-level units.
The exact form of this classification scheme is currently under . .

discussion. It is likely that multiple classification schemes
will result, with increasing emphasis on user perspectives as well
as on APSE functionality rather than APSE tools per se. ..- -
Additional areas of focus for the intermediate and longer term
include the following:

B-7

• ... '..-.,. i. .. " ""' "< ' ""...- . .- . " --

1. evaluation of protocols used by functional components

2. development of the CAIS Validation Capability (CVC)

3. definition of semantics and notation for an APSE

4. recommendations on "CAIS-conformance"

5. evaluation of additional functionality, such as 0
simulation/support for Ada-based program description and
requirements statement languages

6. development of new procedures and metrics for evaluation

7. refinement of the requirements developed for the
short-term S

8. increased emphasis on host/target relationship

9. use of E&V early in the APSE life cycle

10. incorporation of new standards/functionality

11. E&V technology inserted into applications level programs

12. increased emphasis on evaluating the system rather than
the individual components (Requirement 2.2.2)

13. development of the capability to E&V project-specific, 0
application-specific, methodology-specific APSEs
(Requirement 2.2.7)

4.0 REWUIRED AMS EVAAT&IONS AM1f VALTDATIONS

4.1 Introduction

The specific components of an APSE that are candidates for
evaluation are listed in this section. As used in this section,
components may be tools, features of tools, sets of tools,
user-viewable functions performed by the APSE, facilities provided 0
by the APSE and used by some other component, or any software that
provides one of the four interface classes defined in the E&V Plan
[I]. This section divides the requirements for evaluating and

idating APSE components into two categories, component
requirements and macroscopic requirements. Component evaluations
and validations detail the technology needed to address individual
APSE components exclusive of the remainder of the environment. 0
Requirements in this category include those such as compiler and
editor evaluations. Component-wise requirements are detailed in
Section 4.3, and these are based on the attribute definitions of
Section 4.2. Macroscopic evaluations and validations detail the

B-8

technology needed to address the interactions among APSE
components and technology that addresses all APSE components .
independent of their function. Included in these requirements are
evaluations of the human-to-APSE interface and intertool data
interfaces.

4.2 AttibteDeiniions

Component-wise requirements are based on the set of
attributes that the component is to possess. To provide a
consistent meaning, the following attribute definitions and
interpretations have been adopted for E&V use.

1. Availability - The probability that a component will be
functionally ready or operable at some specified point in
time. (14]

2. Capacity - The upper or lower limit of a component's
functions or features.

3. Completeness - The extent to which a tool provides the
complete set of operations necessary to perform a job.
For example, the capability to undo an operation in case
of error. -

4. Configuration Management - All activities related to
controlling the contents of a component; including
monitoring the status, preserving the integrity of
released and developing versions, and controlling the
effects of changes throughout the component. [14] -.-

5. Correctness - Agreement between a component's total 10
response and the stated response in the functional
specification (functional correctness), and/or between
the component as coded and the programming specification
(algorithmic correctness). [14]

6. Costs - The costs of a completed component or the costs
features of a component. Costs of a component may vary
depending on delivery with source code or object code
only (for example). Other cost considerations are
installation, user assistance, and maintenance support.

7. Documentation - The technical data, including on-line,
computer listings, and printouts, which serve the
purposes of: (1) elaborating the design or details of a
component, (2) explaining the capabilities of a
component, and (3) providing operating instructions for
using the component to obtain desired results. [14]

8. Efficiency - The extent to which a component fulfills its
purpose using a minimum of computing resources. This
implies that choices of source code constructions are
made in order to produce the minimum number of words of
object code, or that where alternate algorithms are

B-9

* . . - . - . - -

available, those taking the least time are chosen; or
that information-packing density in core is high, etc.
Of course, many of the ways of coding efficiently are not
necessarily efficient in the sense of being
cost-effective, since portability, maintainability, etc.,
may be degraded as a result. [14]

9. Extendability (Extensibility) - The extent to which a
component allows new capabilities to be added and
existing capabilities to be easily tailored to user
needs. [14]

10. Granularity - The degree to which a component has
separate limited functions that are composable, user
selectable, and communicate through a common data base.

11. Hardware - Design and implementation features of a
component which take advantage of host or target
dependent hardware techniques and performance.

12. Integrity - Extent to which access to a component or
associated data by unauthorized persons can becontrolled. L i](

13. Interfaces - The common boundary between software
components, between hardware devices, or between hardware
and software. When applied to software components, that
set of assumptions made concerning the component by the
remaining components and the system in which it appears.
Software components have control, data, and services .
interfaces. Included in this attribute is conformance to
any existing pertinent interface standards. [14]

14. Interoperability - The ability of APSEs to exchange data
base objects and their relationships in forms usable by
components and user programs without conversion.
Interoperability is measured in the degree to which this
exchange can be accomplished without conversion.

15. Intraoperability - The ability of APSE components to . .
exchange data base objects and their relationships in
forms usable without conversion.

16. Maintainability - The extent to which a component
facilitates updating to satisfy new requirements or to
correct deficiencies. This implies that the it is
understandable, testable, and modifiable. [14]

17. Maturity - The extent to which a component has been used
in the development of deliverable software by typical - •
users and to which the feedback from that use has been
reflected in modifications to it.

18. Transportability - The ability of a component to be
installed on a different APSE without change in
functionality. Transportability is measured in the "
degree to which this installation can be accomplished -
without reprogramming.

B--10
• -".*. T-

S.'.~ - %-

19. Power The extent to which a component has capabilities
such as default options and wild card operations.

20. Proprietary - Restrictions on the release, distribution,
or use of a component. This includes so called "data
rights" restrictions.

21. Rehostability - The ability of an APSE component to be
installed on a different host with needed reprogramming 0
localized to the KAPSE or machine dependencies.

22. Reliability - The extent to which a component can be
expected to perform its intended functions in a
satisfactory manner. [14]

23. Resources Required - The amount and types of hardware or 0
software facilities needed for the operation of a
component. This includes primary and secondary storage
and any other required resources.

24. Retargetability - The ability of an APSE component to
accomplish its function with respect to another target.
The component may require modification.

25. Reusability - Extent to which a component can be used in
other applications; related to the packaging and scope
of the functions that components perform. [14]

26. Robustness - (1) Protection of a component from itself,
user, and system errors. The ability to recover and
provide meaningful diagnostics in the event of unforeseen
situations.

27. Software Production Vehicle - The methodology(ies),
language(s), and technique(s) used to produce the
software related to a component. S

28. Test Availability - The availability of tests which
verify the correctness or effectiveness of a component
function or feature. These tests may also verify proper
response for an incorrect input or technique.

29. Testability - The extent to which a component facilitates S
the establishment of verification criteria and supports
evaluation of its performance. This implies that
requirements are matched to specific modules, or
diagnostic capabilities are provided, etc. [14]

30. Usability - User effort required to learn, operate,
prepare input, and interpret output of a component.

NOTE: The definitions which-reference other literature are not
taken verbatim from the references. The definition may have been

*" changed to conform to E&V objectives.

B-Il

-~~. -.-'. . .- -- . .- •" ,.i .- - - - -. ..-. ,-'-.- -"" ,- .- ,",.,

4.3 equired Co~onent Evaluations

The component-wise requirements of this section are derived
from a matrix of APSE components and attributes. Each Subsection ' -
of Section 4.3 addresses a different APSE component. Currently,
the set of components addressed are taken from the MAPSE (Minimal
Ada Programming Support Environment) toolset outlined in STONEMAN
(10]. These include: 0

1. Command Language Interpreter capable of invoking all APSE
tools.

2. Compiler capable of translating source Ada programs into
target code for the host and at least one target.

3. Configuration Manager capable of assisting in long term
configuration control of protects.

4. Control Flow Static Analyzer capable of producing a chart
of the program control topology.

5. Dynamic Analysis Tool, on systems with an interactive
capability, capable of providing the following functions:
snap shot, break, trace, interface simulator, statement
execution monitor, and timing analysis.

6. File Administrator capable of transfering and comparing
files.

7. Linkers, for both the host and target machines, capable
of partial linking of program units and creating
executable programs from program units.

8. Loaders capable of off-line and/or down-line loading.

9. Prettyprinter capable of printing database objects in
legible formats which depend on the object
categorization.

10. Set-Use Static Analyser capable of providing a cross-
reference map indicating where each data item is changed
in value and where it is merely referenced. 0

11. Text Editor capable of editing general text, including
specifications, design and other documents, and source
programs.

Each Subsection presents a hierarchical breakdown of the
component, followed by an explanation of the hierarchy elements.
Requirements for addressing certain attributes (from Section 4.2)
of hierarchy elements are listed. The format of component-wise
requirements is abbreviated as follows:

Compiler/Efficiency

to refer to the compiler hierarchy element-Compiler and the
attribute-Efficiency. This abbreviation represents the
requirement:

B-12

The efficiency attribute of the compiler component
shall be evaluated.

Each requirement, listed in the abbreviated form above, is
augmented by one or more questions which address the requirement.
While these questions may later become part of the Eylation and
Validation T&M Reference Manual, they are currently included in
Appendices to demonstrate the requirement.

S

NOTE: IN THE CURRENT VERSION, EACH REQUIRED EVALUATION IS LISTED
SEPARATELY IN TEXT IN THE FORMAT SHOWN ABOVE. IN A LATER VERSION
OF THE DOCUMENT, THE TEXT WILL BE REPLACED BY A TABULATED
ARRANGEMENT ALLOWING A MORE CONCISE PRESENTATION OF THE
REQUIREMENTS.

4.3. Command Laag Interpreter

he command language interpreter is probably the only
compkw.ent of an Ada Programming Support Environment to which all
of the users of the APSE are exposed. While other APSE
components, such as the compiler, will be more extensively used,
every user of an APSE, including those not directly involved in
software development, such as managers, must at least use the
command language interpreter once to invoke the APSE function
which they use. In addition, it is only through the command
language interpreter that the user of an APSE can cause the
different components or tools within the APSE to interact with
each other. Thus, the the command language interpreter, more than
most other functions, goes a long way towards establishing the - -

character of an APSE.

In spite of the importance of the command language
interpreter, STONEMAN has only the following to say on the
subject:

"4.D.4 COMMAND LANGUAGES: The requirements of 4.C.3
(individual tool invocation) and 4.C.4 (virtual interface from a
variety of physical terminal devices) may well be implemented by a
command language (or job control language).

"Regardless of the choice of command language, the
environment must provide a primitive operation which enables the
initiation of a program to be carried out. More precisely, this
operation permits a data structure (such as a compiler output) to S
be executed as a program on the host.

"Given this primitive, one possible approach to theimplementation of a command language is to use a basic Ada-like

language whose facilities, offered by a simple interpreter tool,
provide little more than the ability to perform simple editing of
command lines and to initiate programs.

B-13

•S S

II

"The requirement in 4.C.6 (APSE tools may invoke other tools)
indicates that the primitive initiation facility used by the
command language will be made available as a library procedure to
Ada programs. This will enable the user to construct job control
sequences as Ada program texts which initiate other programs.
This -use may well be subject to some restrictions; for example,
to prevent recursive initiation in unsuitable cases.

"A more general approach is to regard the user interaction as 0
being expressed entirely within Ada program segments which are
executed or interpreted as necessary in the context of relevant
points in the APSE database, thus providing a total Ada
environment similar, for example, to an Interlisp environment."

Thus, it is clear that, beyond requiring that both users and 0
programs be able to invoke programs, STONEMAN does not even
explicitly require a command language but merely states that there
"may well" be one. The real effect of all this is that STONEMAN
actually allows maximal latitude in the area of the command
language. This is summari.7ed by the final statement in STONEMAN
on command languages:

In view of this of possibilities, the detailed
choice of command language. '. left as a design decision for the
specific APSEs."

Although STONEMAN only specifically requires a relatively
crude "command language" with the primitive program invocation
function, it is expected that the command languages implemented in S
actual APSEs will be considerably more sophisticated. The authors
of STONEMAN appeared to assume that the requirement that programs
be able to invoke other programs would result in an Ada-like
command language. While the core of many command languages will
undoubtably be Ada-like, it is still possible for a command
language to use inputs that are not only not Ada-like but not even ---
tabular in nature; for example, graphical inputs or menu driven
capabilities. In addition, it can be expected that some command
languages will have high levels of intelligence, including such
capabilities as "do what I mean" and "undo."

It is within this framework of minimal expressed requirements . .
with unbounded possibilities that the following functional
hierarchy is introduced.

Command Language Interpreter Hierarchy

1. Command language interpreter
2. Command language
3. Syntax S
4. Programs
5. Tool/program invoking function-
6. Diagnostic generation functi
7. Non-tabular inputs
8. Interpreter
9. Hosts
10. Interfaces 0
11. Aids
12. Performance

B- 14

. . .. • . ,

D einitiona. Following are the Command Language Interpreter
components given in the hierarchy.

1. Command language interpreter. The command language of an
APSE together with the APSE tool which implements it.

2. Command language. The set of command sequences which can
be recognized by the command language interpreter. This
can include tabular imputs which may or may not be
Ada-like in appearance or non-tabular inputs such as
graphical inputs, selections from menus or device
dependent responses.

3. Syntax. The format of tabular command sequences
inclu.ling the nature of identifiers, control constructs
and other elements.

4. Programs. Complete, self contained command sequences
which can be executed from other command sequences or
user programs.

5. Tool/program invoking function. The ability to invoke an
APSE tool or program from a command sequence. This is
the primary command language requirement imposed by
STONEMAN.

6. Diagnostic generation function. The ability for a
command language sequence to generate diagnostic messages
for use by the user of a command language program.

0
7. Non-tabular inputs. Command language inputs which are

not in the form of programming language-like statements,
such as graphical inputs or direct device specific
hardware responses,

8. Interpreter. The APSE tool or function which actually
interprets or executes the command language sequences. S
It will probably be a software program itself.

9. Hosts. The computer(s) upon which the command language -
interpreter, and presumably the APSE itself, is
implemented.

10. Interfaces. The interfaces between the command language •
interpreter and the other APSE tools and programs.

11. Aids. Facilities for assisting the user of the command
language interpreter; for example, help facilities,
diagnostic messages, formatter and prompter.

12. Performance. Characteristic capacities and response
times of the command language interpreter.

Cnmmand Langu~age Interpreter Re~jremntn

The Availability of the Command Language Interpreter shall be
evaluated.

The Capacities of the Command Language Interpreter shall be

B-15

evaluated.

The Configuration Management of the Command Language Interpreter -
shall be evaluated.

The Costs of the Command Language Interpreter shall be evaluated.

The Documentation of the Command Language Interpreter shall be
evaluated.

The Extendability of the Command Language Interpreter shall be
evaluated.

The Interfaces of the Command Language Interpreter shall be
evaluated.
The Interoperability of the Command Language Interpreter shall be

evaluated.

The Maintainability of the Command Language Interpreter. shall beevaluated.

The Proprietary Rights of the Command Language Interpreter shall S
be evaluated.

The Test Availability of the Command Language Interpreter shall be
evaluated.

The Maturity of the Command Language Interpreter shall be
evaluated.

The Extendability of the Command Language shall be evaluated.

The Robustness of the Command Language shall be evaluated.

The Usability of the Command Language shall be evaluated.

The Usability of the Syntax shall be evaluated.

The Extendability of the Syntax shall be evaluated.

The Extendability of Programs shall be evaluated.

The Granularity of Programs shall be evaluated.

The Interfaces of Programs shall be evaluated.

The Interoperability of Programs shall be evaluated.

The Flexibility of Programs shall be evaluated. _0

The Usability of the Tool/Program Invoking Function shall be
evaluated.

The Interoperability of the Tool/Program Invoking Function shall
be evaluated.

The Flexibility of Non-tabular Inputs shall be evaluated.

The Interoperability of the Interpreter shall be evaluated.

B-16S-

21- ..-

.~.-.. .. . -. - ~ .,. .> '..-.. -..

The Resources Required by the Interpreter shall be evaluated.

The Availability of Hosts shall be evaluated.

The Rehostability of Hosts shall be evaluated.

The Interoperability of Interfaces shall be evaluated.

The Usability of Aids shall be evaluated.

The Efficiency of the Performance shall be evaluated.

4.3.2 mpiler-

It is important to realize the need for evaluating Ada
compilers in light of a comprehensive, formal validation process
which each compiler must pass before it may be used in official
software development projects. The validation of Ada compilers is .
performed by executing the Ada Compiler Validation Capability
(ACVC) suite of tests. These tests measure conformance of the
compiler to the Ada language standard. There are a number of
requirements and issues which cannot always be measured by a
"pass" or "fail" criteria. In many cases, these are more
difficult to measure and require careful study and evaluation.
These include: S

1. Compiler implementation and design techniques to verify
an efficient and usable product.

2. Performance, efficiency, optimizations, options and
capacities.

3. The existence and quality of user and system
documentation.

4. Configuration management and control procedures for " -
documentation, source code, object code, compiler
baselines, versions, and tracking of failure and error
recovery fixes.

5. Compiler maintenance supportability and procedures.

Compiler Hierarchy

1. Compiler
2. Input
3. Command Language
4. User Assistance
5. Source Statements
6. Translation
7. Analysis _
8. Intermediate Forms

*9. Optimization
10. Symbol Table

B-1 7

.1-- --

11. Code Generation
12. Debugging S
13. Optimization
14. Output
15. Analysis
16. Cross-Reference
17. Listing
18. Object Module - --
19. Run Time System
20. Memory Management
21. Task Management
22. Distributed Processing
23. Parallel Processing
24. Exception Handling
25. Data Management 026. Mathematical Functions

Definitions. Following are the definitions for compiler
components given in the hierarchy.

1. Compiler - Issues which are applicable to the entire
compiler system, rather than a component of the compiler.

2. Input - User inputs to the compiler.

3. Command Language - The language with which the user
invokes the compiler, including various user options.
Mode of invocation, such as interactive or batch are S
considered.

4. User Assistance Built-in compiler user assistance such
as invocation help, and user debugging facilities.

5. Source Statements - The Ada computer program as input by
the user.

6. Translation - The compiler process of transforming the
source statements into a form suitable for code
generation.

7. Analysis - Compiler analysis during the translation
process. This includes error analysis, user aid analysis
(e. g., helpful warning messages) and statistical
analysis.

8. Intermediate Forms - Translation of the user program into
forms which aid the transformation and final code
generation phases. 0.

9. Optimization - Compiler techniques which result in better
run time efficiency or less memory than would have been
possible if the optimizations had not been performed.

10. Symbol Table - An internal compiler data structure which
gives attributes, types and other needed compiler
information on program 1dentifiers and any other items of
interest to the compiler.

B-18

~~~~~~~~~~~~~~~~.. . . . . . . . . .. . . . .. . .. ..... .. . . ... .- .-- -- '. " . - ' -..'..-:',','''"--



0, ._7. -..

11. Code Generation -The process of transforming the final
intermediate language form into machine language
instruction code sequences for a particular target (or
host). Since the primary function of a compiler is to
generate object code, it is useful to discuss the
requirements of code quality. The quality of the
produced machine instructions affects both the memory
size and efficiency of the executable program. Most code
generators produce acceptable code for language
constructs such as arithmetic and assignments . However,
many implementation decisions and language features may
be designed in a number of ways. A few of these include
register usage, techniques of passing parameters,
movement of large amounts of data, subroutine calling and
returning sequences, stack management, and memory
management. In the past, most users simply accepted the
produced machine code (as long as there were no compiler
bugs!. The use of Ada in embedded computer systems in
real-time and/or tasking applications will be for a
sophisticated and knowledgeable class of users who
require and demand efficient machine code. A number of
studies have been done comparing the efficiency of
compiler generated code to hand coded assembly language
In general, these studies have shown that an experienced
assembly language programmer can generate code which is
10-25% more efficient than the compiled code. One needs
to be extremely careful in using these comparisons. The
study may be biased to one party or another. The
benchmarks that were used may not be representative of
the general application, or purposely chosen to bias the
results. Despite all of the above, a set of carefully
chosen benchmarks (identically coded in both Ada and
assembler) need to be executed to provide an estimate of
compiler code generation efficiency.

12. Debugging - If a compiler design includes user debugging
capabilities, the "hooks" for this feature are
implemented in the code generation phase. Therefore,
this component addresses techniques of debugging
implementation.

13. Optimization - This component deals with optimization
which is specific to the target (or host). In general,
this optimization takes advantage of machine dependent
features.

14. Output - Outputs produced by the compiler that are usable
by the user or other APSE tools or components.

15. Analysis - Outputs as a result of earlier compiler 0
analysis, such as error messages, statistics, debugging
information, and intermediate forms.

16. Cross-Reference - A formatted output containing ordered -

information. The information includes identifier-
attributes, types and statement numbers given for where...
used, set, etc. Other information may be given.

B--19

.9
........................................

..........................
Ii Cde Gnertion- Te prces of... . transfor ..n the .ia.



17. Listing - An image of the source program along with
compiler statement numbers, error messages, and other
information useful to the user.

18. Object Module - (Sometimes called the relocatable
module). The machine language instruction representation
of the source program. Also included is target dependent
information needed by the linker or linkage editor.

19. Run Time System - (Sometimes referred to as the run time
environment). Includes those modules that are not
considered to be needed for translation, but are needed
during the execution. They generally perform operations
peculiar to a particular host of target machine. It
should be noted that different compilers may perform more
or fewer of the functions than given herein. Therefore, S
the run time system should be evaluated based on the
machine and intended application. Since the Ada language
system was primarily developed for use in embedded
computer systems, there are a number of issues and
considerations for the run time system that may not apply
to other languages. One of the unique features of Ada is
the tasking capability. This implies that ability to
perform parallel processing on two or more CPUs. The
technology to perform parallel processing is still in its
infancy (a great deal of research is in progress). The
tasking issues themselves (using just one processor)
present a number of challenges. In the past, it was
generally accepted that the functions of tasking would be
handled by the host or target operating system. Embedded 0
applications developed their own real-time operating
system (executive) to handle the functions. Since the
high level language did not contain any tasking language
constructs, the compiler implementors were simply not
concerned with this issue. With Ada, the compiler
implementor is faced with generating code to perform
these operations. Several questions immediately arise:
1) Does the compiler designer possess sufficient skills
to implement this technology, and should he be expected
to do it? 2) Considering the many potential target
systems, is the technology available to implement those
featLres in a generalized (but efficient) manner, or does
each target require a substantially different run time
system implementation? 3) Will the end user accept the
compiler designer's product, or should the user be .* -, . .
responsible for the run time system for these functions?
It is doubtful that questions such as these will be
resolved easily. It appearq at this point that one
solution is a close (hopefully friendly) working
relationship between the compiler designers and the
technical staff of the user.

20. Memory Management - Allocation or freeing of memory to
perform functions needed to implement language features
requiring memory management. Also included is memory
management during the compilation phase.

21. Task Management - Modules which implement the tasking
constructs of the Ada language.

B-20 .2



22. Distributed Processing - Implementation of the ability
for a program or system to execute on more than one
processor. Program execution may or may not be in 0
parallel.

23. Parallel Processing - Implementation of the ability to
execute a program or systems functions in parallel on
more than one processor.

24. Exception Handling - Facilities for dealing with errors
or other exceptional situations that arise during program
execution (run time) [7]. Note that this does not
include compile time errors.

25. Data Management - Modules dealing with data mappings and
manipulations peculiar to the host or target. This
includes input/output implementations.

26. Mathematical Functions - Functions, subprograms, or
packages which perform operations of a scientific,
statistical or specialized nature.

CoMpi1lrX Requirements

The Availability of the Compiler shall be evaluated,

The Capacity of the Compiler shall be evaluated.

The Configuration Management of the Compiler shall be evaluated.

The Cost of the Compiler shall be evaluated.

The Documentation of the Compiler shall be evaluated.

The Efficiency of the Compiler shall be evaluated. -

The Extendability of the Compiler shall be evaluated.

The Granularity of the Compiler shall be evaluated.

The Hardware of the Compiler shall be evaluated

The Interfaces of the Compiler shall be evaluated.

The Interoperability of the Compiler shall be evaluated.

The Maintainability of the Compiler shall be evaluated.

The Proprietary Rights of the Compiler shall be evaluated.

The Rehostability of the Compiler shall be evaluated.

The Retargetability of the Compiler shall be evaluated.

The Resources Required by the Compiler shall be evaluated.

The Robustness of the Compiler shall be evaluated.

B-21



The Test Availability of the Compiler shall be evaluated.

The Usability of the Compiler shall be evaluated.

The Availability of Input shall be evaluated.

The Capacity of Input shall be evaluated.

The Documentation of Input shall be evaluated. .

The Usability of Input shall be evaluated.

The Availability of the Input, Command Language shall be
evaluated.

The Document 'tion of the Input, Command Language shall be .
evaluated.

The Test Availabiltiy of the Input, Command Language shall be
evaluated.

The Availability of Input, User Assistance shall be evaluated. 0
The Documentation of Input, User Assistance shall be evaluated.

The Capacity of Input, Source Statements shall be evaluated.

The Usability of Input, Source Statements shall be evaluated.

The Availability of Translation shall be evaluated. O0

The Documentation of Translation shall be evaluated.

The Efficiency of Translation shall be evaluated.

The Extendability of Translation shall be evaluated.

The Interfaces of Translation shall be evaluated.

the Interoperability of Translation shall be evaluated.

The Maintainability of Translation shall be evaluated.

The Proprietary Rights of Translation shall be evaluated.

The Rehostability of Translation shall be evaluated.

The Resources Required of Translation shall be evaluated.

The Robustness of Translation shall be evaluated.

The Test Availability of Translation shall be evaluated.

The Avaliablity of the Translation, Analysis shall be evaluated.

The Documentation of the Translation, Analysis shall be evaluated.

The Efficiency of the Translation, Analysis shall be evaluated.

The Granularity of the Translation, Analysis shall be evaluated.

B-22

. - . .. . . . .. . ." " a. - .



The Interoperability of the Translation, Analysis shall be
evaluated.

The Proprietary Rights of the Translation, Analysis shall be
evaluated.

The Test Availabiltiy of the Translation, Analysis shall be
evaluated.

The Usability of the Translation, Analysis

The Availability of the Translation, Intermediate Forms shall be
evaluated.

The Documentation of the Translation, Intermediate Forms shall be
evaluated.

The Extendability of the Translation, Intermediate Forms shall be
evaluated.

The Interfaces of the Translation, Intermediate Forms shall be
evaluated.

The Interoperabiliyt of the Translation, Intermediate Forms shall
be evaluated.

* The Proprietray Rights of the Translation, Intermediate Forms
shall be evaluated.

The Rehostabiltiy of the Translation, Intermediate Forms shall be .
evaluated.

The Test Availability of the Translation, Intermediate Forms shall
be evaluated.

The Unability of the Translation, Intermediate Forms shall be .
evaluated.

The Availability of the Translation, Optimization shall be
evaluated.

The Documentation of the Translation, Optimization shall be
evaluated.
The Extendability of the Translation, Optimization

The Rehostability of the Translation, Optimization shall be

evaluate6.

The Test Availability of the Translation, Optimization shall be

evaluated.

The Usability of the Translation, Optimization shall be evaluated

The Capacity of the Translation, Symbol Table shall be evaluated

The Documentation of the Translation, Symbol Table shall be
evaluated.

The Efficiency of the Translation, Symbol Table shall be

B- 23

- _' " '- . '. -__' . L•5 .T- " _:' '_. . '- . . - _ ," ,- ," . ,_ " ', ' " ,. ' .' ' T " , ' -'' .''S,



evaluated.

The Interoperabiliyt of the Translation, Symbol Table shall be
evaluated.

the Resources Required of the Translation, Symbol Table shall be
evaluated.

The Test Availability of the Translation, Symbol Table 0

The Usability of the Translation, Symbol Table shall be evaluated.

The Availability of the Code Generation shall be evaluated.

The Capacity (,f the. Code CGeneration shall be evaluated.

The Documentation of the Cuae Ceneration shall be evaluated.

The Efficiency of the Codc GcTiration chall be evaluated.

The Granularity of the Code Generation shall be evaluated.
The Hardware of the Code Generation shall be evaluated.

The Taterfaces of the Code Generation shall be evaluated.

The Ler rability of the Code Generation shall be evaluated.
The , opntainability of the Code Generation shall be evaluated.

The - )prietary Rights of the Code Generation shall be evaluated.

The - 'ostability of the Code Generation shall be evaluated.

The -.cargetability of the Code Generation shall be evaluated.

The Test Availability of the Code Generation shall be evaluated.

The Usability of the Code Generation shall be evaluated.

The Availability of the Code Generation, Debugging shall be
evaluated.

The Documentation of the Code Generation, Debugging shall be
evaluated.

The Efficiency of the Code Generation, Debugging shall be
evaluated.

The Granularity of the Code Generation, Debugging shall be
evaluated.

The Hardware of the Code Generation, Debugging shall be evaluated.

The Interfaces of the Code Generation, Debugging shall be
evaluated.

The Interoperability of the Code Generation, Debugging shall be
evaluated.

B-24

.- .:.:- .: :.--,-.:..::...:. -. :- --: -: : -: . --: : . .. . . . . . . .



rI

The Proprietary Rights of the Code Generation, Debugging shall be
evaluated.

The Rehostabiliy of the Code Generation, Debugging shall be

evaluated.

The Retargetability of the Code Generation, Debugging

The Resources Required of the Code Generation, Debugging shall be 0
evaluated.

The Test Availability of the Code Generation, Debugging shall be
evaluated.

The Usability of the Code Generation, Debugging shall be
evaluated. S

The Availability of the Code Generation, Optimization shall be
evaluated.

The Dc ,umentation of the Code Generation, Optimization shall be
evalu.ted.

The Efficiency of the Code Generation, Optimization shall be
evaluated.

The Hardware of the Code Generation, Optimization shall be
evalua ted.

The Proprietary Rights of the Code Generation, Optimization shall
* be evaluated.

The Rr-targetability of the Code Generation, Optimization shall be
*evaluated.

The Tcst: Availability of the Code Generation, Optimization shall
be evaLuated.

The Usability of the Code Generation, Optimization shall be
evaluated.

The Availabilty of Output shall be evaluated.

The Documentation of Output shall be evaluated.

The Hardware of Output shall be evaluated.

The Interfaces of Output shall be evaluated.

The Resources Required of Output shall be evaluated.

The Test Availability of Output shall be evaluated.

The Usability of Output shall be evaluated.

The Availability of the Output, Analysis shall be evaluated,

The Documentation of the Output, Analysis shall be evaluated.

The Extendability of the Output, Analysis shall be evaluated.

B-25



VOLUME 1(U) AIR FORCE WRIGHT AERONAUTICAL LABS
WRIGHT-PATTERSON AFB OH V L CASTOR 39 NOV 94

UNCLASSIFIED FAL-T- -85- V F/O 14/2 L

mhEohhhmhohmhE



7 T7 -r.7777 
T.

2.2

,& L IN::::

I

I12 8
111111L1.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS- I63,A

16

* -... ;-;.

. . . . . . . . . . . .. . . . . . . . . .



,- ' " •

The Granularity of the Output, Analysis shall be evaluated.

the Interfaces of the Output, Analysis shall be evaluated.

The Interoperability of the Output, Analysis shall be evaluated.

The Rehostability of the Output, Analysis shall be evaluated.

The Test Availability of the Output, Analysis shall be evaluated.-

The Usaility of the Output, Analysis shall be evaluated.

The Availability of the Output, Cross-Reference shall be
evaluated.

The Documentation of the Output, Cross-Reference shall be m

evaluated.

The Test Availability of the Output, Cross-Reference shall be
evaluated.

The Usability of the Output, Cross-Reference shall be evaluated.

The Documentation of the Output, Listing shall be evaluated.

The Test Availability of the Output, Listing shall be evaluated.

The Usability of the Output, Listing shall be evaluated.

The Documentation of the Output, Object Module shall be evaluated. -.. '

The Interfaces of the Output, Object Module shall be evaluated.

The Rehostability of the Output, Object Module shall be evaluated.

The Retargetability of the Output, Object Module shall be
evaluated.

The Test Availability of the Output, Object Module shall be
evaluated.

The Usability of the Output, Object Module shall be evaluated.

The Availability of the RTS(Run Time System) shall be evaluated.

The Documentation of the RTS shall be evaluated.

The Efficiency of the RTS shall be evaluated.

The Extendability of the RTS shall be evaluated.

The Granularity of the RTS shall be evaluated.

The Hardware of the RTS shall be evaluated.

The Interfaces of the RTS shall be evaluated.

The Maintainability of the RTS shall be evaluated.

The Proprietary Rights of the RTS shall be evaluated.

B- 26

TheHadwreof heRT sallbeevlute. "-" '-",



The Rehostability of the RTS shall be evaluated.

The Retargetability of the RTS shall be evaluated. 0

The Resources Required of the RTS shall be evaluated.

The Robustness of the RTS shall be evaluated.

The Test Availability of the RTS shall be evaluated.

The Usability of the RTS shall be evaluated.

The Availability of the RTS, Memory Management shall be evaluated.

The Capacity of the RTS, Memory Management shall be evaluated.

The Documentatio of the RTS, Memory Management shall be evaluated.

The Efficiency of the RTS, Memory Management shall be evaluated.

The Hardware of the RTS, Memory Management shall be evaluated.

The Interfaces of the RTS, Memory Management shall be evaluated. --

The Test Availability of the RTS, Memory Management shall be
evaluated.

The Usability of the RTS, Memory Management shall be evaluated.

The Availability of the RTS, Task Management shall be evaluated.

The Capacity of the RTS, Task Management shall be evaluated.

The Documentation of the RTS, Task Management shall be evaluated

The Efficiency of the RTS, Task Management s'.dll be evaluated.
The Interfaces of the RTS, Task Management shall be evaluated..

The Robustness of the RTS, Task Management shall be evaluated.

The Test Availability of the RTS, Task Management shall be
evaluated.
The Usability of the RTS, Task Management shall be evaluated.

The Availabilty of the RTS, Task Management, DistributedProcessing shall be evaluated.

The Capacity of the RTS, Task Management, Distributed Processing
shall be evaluated.

The Documentation of the RTS, Task Management, Distributed
Processing shall be evaluated.

The Efficiency of the RTS, Task Management, Distributed Processing
shall be evaluated.

The Hardware of the RTS, Task Management, Distributed Processing
shall be evaluated.

B-27

-.-0~ l2



The Resources Required of the RTS, Task Management, Distributed
Processing shall be evaluated.

The Robustness of the RTS, Task Management, Distributed Processing
shall be evaluated.

The Test Availability of the RTS, Task Management, Distributed
Processing shall be evaluated.

The Availability of the RTS, Task Management, Parallel Processing
shall be evaluated.

The Capacity of the RTS, Task Management, Parallel Processing
shall be evaluated.

The Documentation of the RTS, Task Management, Parallel Processing
shall be evaluated.

The Rehostability RTS, Task Management, Parallel Processing shall
be evaluated.

The Retargetability of the RTS Task Management, Parallel
Processing shall be evaluated.
The Test Availability of the RTS, Task Management, Parallel

Processing shall be evaluated.

The Availability of the RTS, Exception Handling shall beevaluated. O

The Documentation of the RTS, Exception Handling

The Efficiency of the RTS, Exception Handling shall be evaluated.

The Hardware of the RTS, Exception Handling shall be evaluated.

The Interfaces of the RTS, Exception Handling shall be evaluated.

The Test Availability of the RTS, Exception Handling shall be
evaluated.

The Usability of the RTS, Exception Handling shall be evaluated.

The Availability of the RTS, Data Management shall be evaluated.

The Capacity of the RTS, Data Management shall be evaluated.

The Documentation of the RTS, Data Management shall be evaluated.

The Efficiency of the RTS, Data Management shall be evaluated.

The Hardware of the RTS, Data Management shall be evaluated.

The Interfaces of the RTS, Data Management shall be evaluated.

The Rehostability of the RTS, Data Management shall be evaluated. O

The Retargetability of the RTS, Data Management shall be
evaluated.

B- 28• * . . . . . . . . . . . . . . . . . . . ..

".;._'.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .."" """" "" " 
" ." " ' ." *.. . ." " "I " " "

" - ' . .. .. .. ..



The Robustness of the RTS, Data Management shall be evaluated.

The Test Availability of the RTS, Data Management shall be 0

evaluated.

The Usability of the RTS, Data Management shall be evaluated.

The Availability of the RTS, Mathematical Functions shall be
evaluated. 0

The Documentatio of the RTS, Mathematical Functions shall be
evaluated.

The Efficiency of the RTSo Mathematical Functions shall be
evaluated.

The Extendability of the RTS, Mathematical Functions shall be
evaluated.

The Interfaces of the RTS, Mathematical Functions shall be
evaluated.

The Proprietary Rights of the RTS, Mathematical Functions shall be S
evaluated.

The Rehostability of the RTS, Mathematical Functions shall be
evaluated.

The Resources Required of the RTS, Mathematical Functions shall be
evaluated. .

The Test Availability of the RTS, Mathematical Functions shall be
evaluated.

The Usability of the RTS, Mathematical Functions shall be
evaluated.

4.3.3 Configuration Managemnt -

Software configuration management (CM) is an information
processing function involving many people in a software
development organization and applying to many different objects.
The manner in which it is done is dependent on at least the
software development organization, the development methodologies
employed, and the characteristics of the software under _
management. The appropriate tools to support configuration
management are therefore somewhat dependent on the particular
circumstance in which they will be used.

The Stoneman requirements for configuration management are
limited to the very minimal set summarized as follows:

The Stoneman requires that the MAPSE must contain a
configuration management tool that will "assist in the
long term configuration control of projects. As minimal

B- 29

• _O-S

r.*.
. . . . . . . . . . . . . . . . . . . . . . ':.



functions this tool will enable interrogation of history
attributes and will offer managerial control over the
persistence of objects in the database." [10, 6.A.12] The 0
APSE configuration management tool must be capable of
determining the origin and purpose of each configuration
and of controlling the further development and
maintenance of the configuration.[10,2.B.5(8)] In order
to provide these capabilities, the KAPSE must maintain a
history attribute recording the manner in which the
configured item was produced and all information which
was relevant in its production. [10,5.A.5] Also, the
configuration management tool must communicate via the
central database provided by the KAPSE This database
will store all relevant information concerning a project
throughout its life cycle. The database will be
structured so that relationships between objects in the
database can be maintained for configuration control.
[10,2.B.4] The detailed requirements of a configuration
management tool are left open to a large degree to be
tailored according to the organization using it
[10,4.B.4].

In the absence of detailed requirements for a MAPSE
configuration management tool and of a working consensus as strong
as there is for some other tools, the functional decomposition
herein must be regarded as a minimal set of primitive functions,
tentatively proposed. Further work in the definition of concepts
and terms for software configuration management and subsequently
in the proposing of model requirements will be essential to the •
development of useful evaluation methods. -

The material in this section draws heavily from references
[8, 9 and 10.]

Configuration Management Component Hierarchy -L

1 Configuration Management
2 Identification
3 Attribute management
4 Version management
5 Variation management
6 Relationship management
7 Configuration Control
8 Workspace partitioning
9 Access control
10 Baseline management
11 Protection
12 Status Accounting and Reporting
13 History reporting
14 Configuration reporting

Definitions. Following are the definitions for the
Configuration Management components given in the hierarchy.

Configuration Item, Configuration, and Baseline. A S
configuration item is a data base object that is under
configuration management. The data base object may be
simple (e.g., source code for a module) or complex (e.g.,

B-30

. . . . . . . .. . . .. . " . .



* -. .- - - - - - - - - - - - - m-.- •-

S

the definition of a software configuration or a --
baseline.) A configuration is an aggregation of -
components and of the relationships among them. [9] A
baseline is the content of a configuration at a
designated and fixed time during the software life cycle.
[9]

I. Configuration Management. The software configuration
management function consists of identifying and S
documenting the characteristics of a configuration item,
controlling changes to the characteristics, and recording
and reporting the changes to and status of configuration
items. [9]

2. Identification. The configuration identification
function establishes a definition and identification of 0
the functional and physical characteristics of any
configured item. It identifies the relationship between
configured items and insures a consistent generation of
identification labels for subsequent versions of modified
configured items.

3. Attribute Management. Attribute management is the 0
function of creating, changing (both automatically and at
the command of the user), and providing access to
attributes of configuration management data base objects.

4 Version Management. Version management is comprised of
the generating of a revision group composed of successive
versions of a database object, generating a unique name
for each version, and accessing members of the group
directly and implicitly.

5. Variation Management. Variation management is comprised
of the generation of variations of a database object (
e.g., object code modules for different targets), each
with a unique name, and the accessing of a variation
directly and implicitly.

6. Relationship Management. Relationship management
consists of creating, changing (automatically or by user
command), and providing access to relationships between
configuration management data base objects. S

7. Configuration Control. Configuration control manages
access to configured items, controls changes to
characteristics, supports the definitions of baselines.
and ensures the integrity of the configuration management
data base. S

8. Workspace Partitioning. Workspace partitioning consists
of supporting multiple projects and multiple teams within
a project to provide protected workspaces and common
access consistent with the project organization. [8]

9. Access Control. Access control consists of defining
types of access rights, implementing control of access to
configuration management data base objects based on
assigned rights, and controlling the assignment of access
rights.

B-31

.. . . . . .. . ... . . . . . . . . . . . . . . . . . . ...



10. Baseline Management. Baseline management consists of
identifying a configuration baseline and controlling
changes to it.

11. Protection. The protection function consists of ensuring
the reliability of the configuration management data base
by providing back-up and reconstitution of configuration
management information and of preventing the deletion oL -
needed objects. S

12. Status Accounting and Reporting. Configuration status
accounting establishes a mechanism for determining how a
configuration evolved and where a configuration is at any
given time. It provides a means for tracing the history
of changes to any configured item. A configured item log
which describes the status and functionality of all items 0
under CM should be obtainable.

13 History Reporting. History reporting consists of the
reporting of the history of changes to a configuration
management data base object. This history should include
the date and time of creation of and modifications to the
configured item, a description of each change to the 0
configured item, and the name of the individual or
organization who authorized and performed the change.

14. Configuration Reporting. Configuration reporting
consists of reporting on the content and status of a
configuration baseline.

Conficuration Managent Requirements

The Availability of the Configuration Manager shall be evaluated.

The Capacity of the Configuration Manager shall be evaluated.

The Configuration Management of the Configuration Manager shall be
evaluated.

The Costs of the Configuration Manager shall be evaluated.

The Documentation of the Configuration Manager shall be evaluated. S

The Extendability of the Configuration Manager shall be evaluated.

The Interfaces of the Configuration Manager shall be evaluated.

The Intraoperability of the Configuration Manager shall be
evaluated.

The Maintainability of the Configuration Manager shall be
evaluated.

The Efficiency of the Configuration Manager shall be evaluated.

The Rehostability of the Configuration Manager shall be evaluated "

The Usability of the Configuration Manager shall be evaluated.

B-32
- S



The Proprietary Rights of the Configuration Manager shall be

evaluated.

The Granularity of the Configuration Manager shall be evaluated.

The Test Availability of the Configuration Manager shall be.. -

* evaluated.

The Maturity of the Configuration Manager shall be evaluated.

The Availability of Identification shall be evaluated.

The Configuration Management of the Identification shall be
evaluated.

The Costs of Identification shall be evaluated

The Documentation of the Identification shall be evaluated.

The Extendability of Identification shall be evaluated.

The T.',-erfaces of Identification shall be evaluated.

The .'-ailability of Attribute Management shall be evaluated.

The pacity of the Attribute Management shall be evaluated.

The *-r-endability of Attribute Management shall be evaluated

The .hteroperability of Attribute Management shall be evaluated.

The Power of Attribute Management shall be evaluated.

The Availability of Version Management shall be evaluated.

h The Efficiency of Version Management shall be evaluated.

The £'.;wer of Version Management shall be evaluated.

The Availability of Variation Management shall be evaluated.

The Power of Variation Management shall be evaluated.

The Availability of Relationship Management shall be evaluated.

* The Capacity of Relationship Management shall be evaluated.

The Completeness of Relationship Management shall be evaluated

pThe Extendability of Relationship Management shall be evaluated

The Availability of Configuration Control shall be evaluated.

The Configuration Management of Configuration Control shall be
evaluated.

The Costs of Configuration Control shall be evaluated.

The Documentation of Configuration Control shall be evaluated.

B- 33

p ' - . " 7 . . . - " " " ° - ' - " " ' •2 . : - . ' . • > -. - - ' 5 > " ' . ' ' . - ' = : " - - - -7 - - , " - -' - - . . .i :- - . .,



The Etdbi of Configuration Control shall be- evaluated.- . ..- "-

The Extendability of Configuration Control shall be evaluated.

The Interfaces of Configuration Control shall be evaluated. 6

The Interfaces of Workspace Partitioning shall be evaluated.

The Availability of Access Control shall be evaluated.

The Extendability of Access Control shall be evaluated.

The Power of Access Control shall be evaluated.

The Completeness of Access Control shall be evaluated.

0
The Ava lability of Baseline Management shall be evaluated.

The Power of Baseline Management shall be evaluated.

Thr " abiliy of Protection shall be evaluated.

The ciency of Protection shall be evaluated 0

71The F stness of Protection shall be evaluated.

The lability of Status Accounting and Reporting shall be
eval, d.

The 'lability of History Reporting shall be evaluated. S

The -ndabiliy of History Reporting shall be evaluated.

The Av. lability of Configuration Reporting shall be evaluated.

0

4.4.1 Software. Develpment Meh.dology Suprt-

Of interest to an organization that is assessing an APSE is
the degree to which it supports or excludes the organization's
software development methodology. An adequate assessment of an S
APSE includes the impact it will have on the organization's
established procedures and the cost of adapting the APSE to those
procedures. To support these concerns, the following evaluations
are required.

Requirements

1. Evaluation technology shall be developed to determine the
degree to which an APSE supports or excludes specific
development methodologies.

B-34



2. Evaluation technology shall be developed to determine the
degree of flexibility and extensibility of an APSE to
support development methodologies.

3. Evaluation technology shall be developed to assess how
APSE tools and supported methodologies improve
productivity.

4.4.2 -ife-cyct Support

To simplify the APSE concept-of-use, its features should 0
readily relate to users' needs within the framework of the
software development life-cycle. The criteria for making this
assessment consist of relating each tool to the life-cycle
activl y it supports, and, for all toolsets, assessing the degree
of .. :rehensive coverage of the life-cycle. Tools that do not
apply I.) a specific activity, and so support multiple activities
in a ,, lity sense (editors, report generators, etc.) should be so
identi''ed.

Requi .ents

1. APSE evaluations shall include a classification of APSE
tools, which is constructed in a manner to indicate the S
life-cycle activities addressed by each tool.

2. Evaluation technology shall be developed to assess the
degree to which a tool supports the life-cycle activity
it addresses.

3. Evaluation technology shall be developed to assess the I
ease of transition among life-cycle activities

4.4.3 App- i irmnts -

An APSE is a collection of software engineering tools. The
purpose of building these tools is to employ them in the
development of software systems for embedded computer systems. An
APSE contributes directly towards addressing the goals of these
mission-critical applicatiors. Therefore, it is important to
evaluate the capabilities and performance of an APSE specific to
the application environment in which it will be employed.

Requirements

1. Evaluation technology shall be developed to assess the
capability and performance of the Target System as a
result of APSE-produced sofuware.

B- 35

............................... ...



2. Evaluation technology shall be developed to assess the - -
capability and performance of the host development system
and/or the field service system.

3. Evaluation technology shall include application specific
benchmarks.

4. Evaluation technology shall be developed to assess
distributed and/or multiprocessor systems.

5. Evaluation technology shall be developed to assess
simulation support capabilities

6. Evaluation technology shall be developed to assess
capabilities for transitioning applications from Host to
Target.

7. Evaluations shall include identification and functional
elaboration of application specific tools.

4.4.4 IznLertool Tnte- 'ce

APSE evaluation results should assist the APSE developer in S
identifying tool(set)(s) that may easily be integrated into an
enviroicment. For example, one may want to integrate a specific
vendor's complier into an environment because it meets certain
code efficiency requirements. The evaluation of the
compiler-to-APSE interfaces should provide information that will
assist the APSE developer in determining the effort required to
incorpor ,e this compiler into an APSE.

Requirements

1. Evaluation technology shall be developed to assess the
degree of coupling between APSE tools.

2. Evaluation of an APSE shall include identification of the 6
APSE toolsets and the tool components that comprize each
toolset.

5.0 QUALITY GUIDANE EMB E.&Y TECHNLOGY

<TBD>

B-36



6.0 RFENC~s~

1. Evaluation and Validation (E & V) Plan, Version 1.0. Air
Force Wright Aeronautical Laboratories, Wright-Patterson
AFB, 30 November 1983

2. Bailey, E. K., A Framework for Evaluating APSE 0
Useability, 6 June 1984 (Draft).

3. Houghton, R., A Taxonomy of Tool Features for the Ada
Programming Support Environment (APSE), NBSIR 82-2625,
U.S. Department of Commerce, National Bureau of
Standards, December 1982.

4. Probert, T. H., Ada Validation Organization: Policies
and Procedures, MTR-82WO0103, The MITRE Corporation, June
1982.

Nissen, J. C. D., Wichmann, B. A., et al., Ada-Europe
Guidelines for Ada Compiler Specification and Selection,
October 1982.

• Castor, V., Criteria for the Evaluation of ROLM
Corporation's Ada Work Center, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AEB, January
1983

Ada Programming Language, ANSI/MIL-STD-1815A, 17 February

1983

Orndorff, M. S., Evaluation of Automated Configuration
Management Tools in Ada Programming Support Environments
(Thesis), AFIT/GCS/EE/84M-I, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB,March
1984.

9. Proceedings of the Configuration Management Workshop, San
Diego, CA, 7-8 June 1983.

10. Buxton, J., Stenning, V., DoD Recuirements for Ada
Programming Support Environments, "Stoneman", February 0
1980.

11. Dobbs, P., 400 Generic APSE Questions, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB,December
1983.

12. Howe,R.G., Evaluation Criteria for Ada Run Time -0
Environments, Mitre Memo D73-M-2415, January 1984. -

13. Witte,B., Checklist for Ada math Support Priorities, Ada . .
Letters, April 1984.

14. The DACS Glossary, A Bibliography of Software Engineering
Terms, October, 1979.

B-37

...............................



APPENDIX A

ACRONYMT-Tq

ACVC Ada Compiler Validation Capability

APSE Ada Programming Support Environment

APSE.i,, APSE Working Group ..

CAIS Common APSE Interface Set

CAISWG CAIS Working Group

CM Configuration Management

CVC CAIS Validation Capability

E&V Evaluation and Validation

GFE Government Furnished Equipment -

KAPSE Kernel Ada Programming Support Environment 0

KIT Y.ir'nel Interface Team

KITIA Kernel Interface Team Industry/Academic

MAPSE Minimal Ada Programming Support Environment

PUBWG Public Relations Working Group

REQWG Requirements Working Group

RTS Run Time System

TECWG Technical Coordination Working Group 6

B- 38

-. . . . . . .. . . . . . . . . . . ..

.~~~~~~~~~~~.o . .. .- .. ,. . . .. . .. -.... . .. . . . .•. .,.. ...... -.. . . .. ,". -*-- .....

-. . "" " ".*,. -*"--' -*-.." . . ", " ." ' ' - " . " " - "" " " . " . . . " ."" " . " ' . " . ." " '' '. - " "" " . " ,'_ ""'* ..' . .'I ",. i .i ' . -
'



APPENDIX B

Counrand Laguag Inrpetr Requirements and QuestZions~

Coma..dLanguage Interpreter/Availability

1. Is the tool completed?

2. If not when will it be available?

Command Language Interpreter/Capacities

1. Do the capacities and limitations of the command language
vary from host to host?

2. What is the maximum allowable length of a command stream?

3. What is the maximum number of parameters allowed in a command
stream?

4. What is the maximum number of symbols allowed in a command
Stream?

5. What is maximum allowed depth of nested substitution?

6. What is the maximum allowed lever of nested loops?

7. What is the maximum allowed level of recursion?

8. Can the limitations and/or capacities be altered without
substantially modifying the tool?

9. Can the limitations and/or capactities be altered by the
user? -.

Command Language Interpreter/Configuration Management

1. Is the tool under configuration management?

2. If not, is there an available configuration management
organization?

Command Language Interpreter/Costs

B- 39

-. .

[.*.



1. What is the cost of this tool?
0

2. Does the vendor retain data rights?

3. What does this cost include?

Command Language Interpreter/Documentation

1. Is the tool documented?

2. What military standards does the documentation meet?

Command Language Interpreter/Extendability

1. Can new features/functions be added to the tool?

2. Can these augmentations be made by the user at will or is
vender support required?

Command Language Interpreter/Interfaces

1. Are all appropriate interfaces well defined, documented and
as uniform as possible?

2. Does this tool interface with other APSE tools through a
common interface?

Command Language Interpreter/Interoperability

1. Can this tool be used with a wide variety of other tools for
varying purposes?

2. Is the tool compatible with other APSE's?

3. Can command language sequences be invoked from within Ada
programs? -

Command Language Interpreter/Maintainability

1. Was this tool built in iuch a manner that it is maintainable?

Command Language Interpreter/Proprietary

1. Does the vender retain proprietary rights to this tool?

2. Is this tool available GFE?

Command Language Interpreter/Test Availability

1. Are there tests available for this tool? _*

2. What methods do the tests employ?

Command Language Interpreter/Maturity

1. What is the level of maturity of this tool? .

2. How many current users are there?

B-40

-~~... ..............-................... -..... •.......... ......... ... ... .,-... .... -.....- ..........::.--.

* ." "- . .. = - " .- . •,* VA t_._* •..,.. ,. * :..A .. . . . . . .Z;". "* -_ - J .. A ' .,A . ' "- 
° " -



COMMAND LANGUAGE INTtEER WETI

3. What has been the past usage history?

4. Is the number of users increasing or decreasing?

Command Language/extendabi lity

1. Does the command language allow user defined functions?

2. Does the command language allow tailoring of its functions?

Command Language/Robustness 0

1. Does the command language contain "do what I mean" features?

2. does the commmand language contain "undo" features?

3. Does the command language contain privileged features? •

Command Language/Usability

1. Does the command language contain procedures?

2. What type of support is provided for parameters?

3. What are the scoping rules?

4. Does the command language interpreter allow assignment
statements?

5. What types of logical expressions are allowed? -

6. What types of arithmetic expressions are allowed?

7. Does the command language allow logical loops?

8. Does the command language allow arithmetic loops?

9. Can the limits in loops depend dynamically on the results of is
programs initiated by the command language within the loop'

10. What types of conditional control structures are allowed in
the command language?

11. Can the outcome of a conditional statement depend dynamically
on the results of programs initiated in earlier parts of that
conditional statement?

Syntax/Usabi 1 ity

1. Is the syntax of the tabular portions of the command language
similar to that of Ada? 0

2. Is the syntax of the tabular portions of the command language
of a uniform nature for the various constructs in the
language?

3. By what class of grammar is the tabular portion of the
command language representable (regular expressions, linear.
LL(1), SLR().. .(

B-4 1
-."S .



Syntax/Extendabi tiy

1. Must user defined extensions to the command language, if
allowed, use the same format as the rest of the command
language?

2. Does the syntax make use of the Ada features such as packages
and generics which assist in extendability?

Programs/Extendabi 1 ity

1. Does the command language have the cpapbility of defining
programs or procedures?

2. Can command language programs contain subprograms?

Programs/Granularity

1. Can any command language sequence be treated as a program?

2. Are self modifying command language programs allowed?

Programs/Inter faces .

1. How do command language programs exchange data and/or signals
with each other?

2. Can command language programs interact through the APSE
database?

Programs/Interoperability

1. Can command language programs be used as parameters to other
command language programs?

2. Can Ada programs be !sed as parameters to command language
programs?

3. Are command languag:. programs treated any differently than

Ada programs?

Programs/Flexibility

1. Does the command language contain features for encapsulating
command language programs?

2. Does the command language contain features for developing
generic command language programs?

Tool/Program Invoking Function/Usability 0

I. What is the nature of the tool/program invoking function? . .

2. Do the capabilities of the tool/program invoking function
differ from that for invoking command language programs?

Tool/Program Invoking Function/Interoperability

B-4 2
-/S ll



1. Does the invocation function differentiate between tool and
applications programs?

* Diagonistic Generation Function/Usability

1. Does the command language contain provisions for a command
language program to generate error messages and/or
diagnostics for the user of the program?

2. Does the command language contain facilities for dynamically
generating and/or editing diagnostics?

Non-tabular Inputs/Flexibility

1. Does the command language contain provisions for graphical or
other non-tabular input?

2. Does the command language contain provisions for creating
menu driven command sequences?

3. How is the use of non-tabular inputs integrated with the
tabular inputs?

Interpreter/Interoperabil1ity

1. Is the interpreter an integrated part of a larger toolset?

* Interpreter/Resources Required

1. What hardware resources are required to support the
interpreter? p

2. What software resources are required to support the
interpreter?

aHost/Availability

1. On what host/operating system combinations is the interpreter
available?

2. On what APSEs is the interpreter implemented?

Hosts/Rehostability

1. To what extent does the interpreter use the services provided
by the host computer and operating system?

2. Is the APSE on which the interpreter is implemented
compatible with KAPSEs implemented on different machines?

Interfaces/Interoperability

1. Does the interpreter have a well defined interface to a
database manager?

2. Does the interpreter have a well defined interface to a
program library?

B-43.

"_..... N.



I'. -I T

COMMAND LANGU~AE INERPRETER QUESTTQNS

3. Does the interpreter have well defined, uniform interfaces to
all other programs and APSE tools?

Aids/Usability

1. Does the interpreter provided assistance to the programmer in
the form of programming aids such as syntax directed editing, -

prompters, etc?

2. Can the execution of a command language program be simulated
prior to actual executicn for debugzing purposes? .

2 What is the nature of the diagnostics generated by the
command language interpreter?

4. Is there a symbolic debugging capbility for command language

programs?

5. Are there user setable options within the interpreter?

Per: ice/Efficiency

On a host by host basis, what is the expected response time .
for the interpreter? 0

B-44

.....S -[

S-. -

B-44-"-"," "

.... . . . .. .,

. . . . . . . . . . .. . . . . . . .



i0

APPENDIX C 0

COMPILE QUSIN

Comiler Requirements and Que.tions

Compiler/Availability

1. On how many hosts is this compiler installed? .0
- Approximately how many users have used the compiler?
- Have there been any major software systems developed

using this compiler?

2. What are the target computers for which this compiler can
generate code? For each of the targets, approximately how
many users are there? To what degree have the targets been
exercised? [5]

3. Can the compiler be invoked in both an interactive and a
batch mode?

4. Can the compiler be invoked while using other APSE tools?
While in the editor, for example.

5. Are there any additional tools supplied with the compiler
(e.g., symbolic debugger, target simulator, downloader,
linker, etc.)?

6. Are there significant compiler -features that could be -
considered above and beyond that specified in the Ada
language specification?

Compiler/Capacity

1. What is the maximum number of users that can invoke the
compiler simultaneously? Has this number been verified?

2. What are the limitations on the total (code and data) memory
space as occupied by individual packages, tasks and
subprograms that can be compiled [12 ] ?

B-45

. ... •. ".. . .. . . . .... .. •.... .. .... ,•., . . . . . .. . . . . . . ...... . -. .. ,



3. What are the limitations on the maximum number of packages.
subprograms, or tasks in a compilation?

4. For a small host configuration, are there any restrictions on
the size of a program unit that can be compiled? If so, are
they indicated in the users' documentation? [5]

Compijer/Configuration Management (CM)

1. What is the general CM plan?

2. W io is responsible for CM (for the supplier)?

3. A-e all the source and object modules for a complete version
aailable in one area (e.g., on a tape or a separately 0
controlled disk area)? Is this area'accessible to only one
person or anyone on the project?

4. How are compiler fixes or enhancements incorporated into a
new version?

5. How are new versions controlled and released? 6

6. If the compiler produces code for more than one target, how
are common and machine-dependent modules controlled? For
example, are there conventions for naming common function
modules for each target?

7. How are approved compiler changes incorporated into newversions? The change approval procedures.

8. Does there exist a list of all modules (including the run
time system) that are needed for a complete compiler version?
(A version description document).

9. What are the procedures used to update the documentation as a
result of compiler changes? Who is responsible to verify
that this is done?

Compiler/Cost
0

1. What are the costs of acquiring the compiler? These costs
should be given in terms of: -'

Does the cost include the installation and required
maintenance support?
Is source code or only object code supplied? - -

- Costs of additional (non-supplier developed tools)?
Monthly (or periodic) additional maintenance fees?
Does the cost include receipt of new versions of the
compiler and needed tools?
Various cost options depending on licensing (proprietary)
arrangements? [5)

2. What is the estimated cost for a compiler rehost? 0

B-46

S i

"" .'.-.- .- -'-..-."'..- - .. "-'..'. "- .' ." .___".'_''_','._..___.'__"- '______'_"_..-_".' ." ' -.- _.,_________,_- __'" "_



COMPILER QUTONS

3. What is the estimated cost for a compiler retarget? What do
the costs in 2 and 3 above include (test, integration, -
installation, etc.)?

Compiler/Documentation

1. Is a requirements document available? Verify the content and
quality.

2. Are complete design specifications available? Verify the
content and quality, as follows:

- An overview of the compiler design showing the major
structure and design.

- Details of the compiler phases and passes.
Separate sections which outline the design of the host
and each target (to include the run time system(s)) 0

- Is the design detail sufficient such that an experienced
compiler software engineer could maintain the compiler?

- Are compiler design changes updated in the documents"
- Is sufficient user documentation available for the host

and each target?

3. Does the users (or reference) manual contain an Appendix F
which describes all implementation dependent characteristics?

4. Is documentation available for any special tools that were
used for the compiler development?

5. Is documentation available for any separate tools that are 5
needed for compiler operation?

Compiler/Efficiency

1. Does the compiler produce assembly language programs, a .
relocatable object module or interpretive output code? [5]

2. Are object modules interpreted in real time by software
(and/or by firmware) in the target computer? [12] Or is
there direct machine instruction execution?

3. Is there a facility for management control on the use of
low-level (e.g., machine language) features where the use of
Ada might otherwise be possible? [5]

4. What is the average number of statements compiled per CPU
minute? Are there characteristics of the source text which
significantly reduce compiling speed? (Constructs which are
likely to influence compiling speeds include the length of 0
the WITH clause, the compilation of a sub-unit, and the
presence of generic instantiations.) [5]

5. Are there any alternative structures suggested for the
production of low cost, low quality back ends and high
quality back ends? [5]

Compiler/Extendability

B-47

, -" ',S
'3•." ,



CO QUESTIO

1. What were the original design goals of the compiler? [5]
- Was the design intended for a particular class of users? S

[5]
- Are any specific applications envisaged? [5]

2. What high level language(s) is the compiler written in? What x."-
percentage is written in assembly language?

3. If written in Ada, were the use of certain language
constructs avoided (e.g., tasking, generics, real
arithmetic)? [5]

4. Has the compiler successfully recompiled itself?

5. Were any special tools such as a compiler-compiler, S
translator writing systems, etc., used during the
development? If so, are they available to possibly construct
additional tools? [5]

- Do these tools generate a source program of the compiler
or do they translate directly into object code? [5]

- If these tools do not generate an Ada (or other language)
program, how can the tools be retargeted? [5]

- What languages are the tools written in? [5]

Compiler/Granularity

1. What are the major compiler phases? What phases are in
memory as the compilation progresses?

2. To what degree are the components of the compiler separable?

3. What parts of the compiler are seen as useful in building
other tools? [5]

Compiler/Hardware ... -

1. Are hardware machine dependencies clearly identified in both
the code and documentation?

2. Is the compiler designed to use virtual memory? [5] 0

3. Are hardware dependencies concealed by module interfaces,
[5]

Compiler/Interfaces

1. Is the major design interface to a KAPSE or the host
operating system?

2. If the interface is to a KAPSE, what KAPSE facilities does
the compiler use? [5]

3. Does the compiler operate in a particular APSE? [5] If so, 0
what APSE (or MAPSE) tools does it require, if any? [5]

11-48

.... ... ... . . . - - .. ... . . ... . . .:-...-:.... ...... .._...



4. If not part of an APSE, what characteristics of the host
cperating system does the compiler rely on? [5] Are all such
system dependencies concealed behind module interfaces? [5]

5. Which interfaces are regarded as significant for rehosting or
retargeting? [5]

6. What other tools (e.g., symbolic debugger) does the compiler
interface with? [5]

- To what extent are the interfaces documented? [5]
- Can alternative tools be written conforming to these

interfaces?

Compiler/Interoperability

1. Wh.at compiler generated information is available to other
tools?

- Symbol table?
- Cross-reference table?
- Intermediate forms?
- Listing outputs?

2. Does the compiler share, or make use of, other APSE (or
operating system) tables or information?

Compiler/Maintainability

1. Are instructions available to enable a non-compiler person to
install the compiler on an identical host system?

2. Are the procedures for complete compiler generation (from
source to executable) documented?

3. What arrangements are available for maintenance? Such
arrangements can range from postal service to an on-call
maintenance staff. [5]

4. What is the quality of maintenance support?
- Designated persons for maintenance contact?

9 - Availability of maintenance documentation?
- Telephone query service, visits by supplier staff

courses, etc? [5]-

5. What are the arrangements for charging for maintenance and/or
support of the compiler? [5]

Compiler/Proprietary

1. Can a user install the compiler, or must the supplier do th. .
installation? [5]

2. Are there any proprietary restrictions on compiler release 5
(e.g., no source supplied, data rights, etc.)?

. ~~ ..-.. . . .
p 0 i

•- .-i'-'...........................................................................-. .......- ,.-..-" " ..-. • ."



* C0MPILER QUESIONS

3. Are there any restrictions on special (non-supplier
developed) tools needed for compiler operation? Also, for -
any optional tools that may be useful?

4. Does the supplier allow others to perform a rehost or
retarget? [5]

5. Under what circumstances may the source be made available for
a rehost or retarget? [5] •

6. What are the licensing arrangements for the compiler (e.g.,
at how many sites can the compiler be used)? [5]

7, W:at agreement does the user have to sign before the compiler
m.y be supplied to others? [5] 0

8. CL.n a license to distribute the compiler to others be bought
or leased? What parts of the compiler (run time system,
packages, separate tools, etc.) can be distributed? Can
source be included? [5]

9. Can a license to use the compiler be bought outright or
leased? [5]

10. What are the arrangements (if any) for the release of
information about the compiler's internal structure? [5]

11. Are there any restrictions on the use and/or distribution of
software produced by the compiler? It should be noted that
the software produced often contains a run time system
delivered by the compiler supplier. [5]

Compiler/Rehostability

1. Has the compiler been rehosted?

2. What module (or modules) of the front end (machine
independent) need to be modified for the rehost?

3. Is there a manual which describes the steps necessary to
rehost the compiler? [5]

4. Are system dependencies adequately isolated and documented?
[5]

5. Is there a kit of tools and/or components available to help
with the rehosting task? [5] .

6. Is the compiler sufficiently modular to allow implementation S
of critical parts (such as major data structures) to be
easily altered for the rehost task? [5]

7. Is an estimate of time given for the rehost?

Compiler/Retargetability

1. What modules of the back end (machine dependent) need to be

modified for a retarget?

--50--



CO21IER QUESTIONS

2. What modules of the front end need to be modified for a

retarget and what are their interfaces?-

3. What techniques are used to retarget[5]

4. Are there any automated tools to aid in the retarget process?

5. Is an estimate of time given for the retarget task?

6. Is there a manual describing the procedures for retargeting? 0
Possibly with examples. [5]

7. Fo. the intermediate language retargeting interface, is the
in-ermediate language tree structured, linear, etc? [5]

8. Is there more than one level of intermediate language at 0
which retargeting is carried out? [5]

9. For the retarget process, what assumptions are made in the
design of, and requirements of, the run time system (e.g.
tasking monitor, storage allocation scheme, etc.)? [5]

Compiler/Resources Required

1. What is the minimum size of memory needed for one user to run
the compiler?

- Does this change for different targets?
- Does the size of the source program increase this minimum

requirement?
- As more than one simultaneous user invokes the compiler, 0

by how much does this minimum increase?

2. What is the minimum size of me2mory needed for one user during

each compiler phase?

3. Repeat questions 1 and 2 for secondary storage requirements .

4. Are any resources other than primary and secondary storage

needed to invoke the compiler?

5. Are compiler phases overlaid to reduce memory oc: . ncy '

so, are any requirements placed on the system'

Compiler/Robustness

1. What safeguards are implemented for protection and recovery
against unforeseen system, user and its own failures'

- Data protection? ."-
- Internal exception handlers? "
- Trace back facility?

Compiler/Test Availability

1. What tests are available from the supplier to verify compiler

operations? _•
Are the tests documented in a test plan?

B - ,I- . . , ,



7S

COQIL[ER QUOiTLQNU

- Are instructions for use available?

Compiler/Usability

1. What is the host configuration under which this compiler is
installed? [5]

2. What are the host/target configurations under which theproduced object code will execute?

3. If the compiler interface is to the host operating system,
under which operating system version (or release) does the
compiler operate? Also, which target(s) operating system(s)?

4. If the compiler interface is to an APSE, under what version
(or release) of the APSE does the compiler operate?

5. What is the character set of the host? [5]

6. What is the charactejr set of non-host targets? [5]

7. Does the users' documentation give helpful user aids on
constructs to avoid, features that increase the compiling
speed, and features which could aid run time efficiency?

8. Are any phases (especially optimization phases) options
selected by either a compile time switch or when configuring
the compiler? [5]

Input/Availability

1. Is UNCHECKED-CONVERSION supported? [12] If so, are the
details of implementation usage and effects explained?

2. Is PRAGMA-INTERFACE supported? If so, what languages are
possible? [12]

Input/Capacity

1. Is there a limit on the number of discrete values for S
ENUMERATION types? [12]

2. What is the range of values for PREDEFINED INTEGER types"
[12]

3. What are the maximum values for REAL types (floating and
fixed point)? [12] 0

4. Are there any restrictions on the use of SHORT variables'

5. For ARRAY types, what restrictions are placed on the number
of indices, the range of index values? [12]

6. Is there an upper bound for the number of iterations in a
loop statement?

B-52

S

--'-.' -'. '..-- .''. .- . . .. "." . . -. .- " ." .- ... -. -.. .... . . . . . . ..- . ..- ....'> - . > . > -.-' •. - -'." ' - . .



COMILER QWESUQNS

7. What is the maximum number of nested procedures that are
allowed? [12] 0

8. Is there a limit on the range of literal values which the
compiler cannot handle? [5] -.

9. What is the maximum number of characters permitted on a line
of source code? [5] ..- ,-

10. Are there any limits on the number of items of various kinds

such as identifiers and strings? [5]

Input/Documentation

1. Is the format of every implementation defined PRAGMA
documented? [5,6]

2. Is there a list of all restrictions on representation

specifications? [5]

Input/Usability

1. For predefined integer types, what are the values of: [5] 0
INTEGER'FIRST INTEGER' LAST
SHORTINTEGER'FIRST SHORTINTEGER'LAST
LONGINTEGER'FIRST LONGINTEGER'LAST
(Similarly for any other predefined integer types)

2. For floating point types, what are the values of:
FLOAT 'DIGITS F 'MACHINEMANTISSA
SHORTFLOAT'DIGITS F'MACHINE-EMAX
F'MACHINE_.ROUNDS F'MACHINEEMIN
F'MACHINERYADIX F'MACHINE_OVERFLOW [5]

3. In the specification of package SYSTEM, what are the values
of [5]: MININT, MAXINT, MAXDIGITS0 MAXMANTISSA, FINEDELTA,
and TICK. 0

4. For tasking applications, what are the values of: [5]
DURATION'DELTA, DURATION'ACTUALDELTA, DURATION'FIRST.
DURATION'LAST, PRIORITY'FIRST, and PRIORITY'LAST

5. What are the values outside the range of safe numbers for 0
real types? [5]

6. Are there any restrictions on the use of the generic
procedure UNCHECKEDDEALLOCATION? [5]

7. Are there any restrictions on the use of the generic
procedure UNCHECKEDCONVERSION? [5] _0

Input, Command Language/Availability

1. Does the command language offer the following options:
- Suppress output of a source listing?
- Reformat (e.g., indent) the listing? [6].
- Bring in text (for example, an INCLUDE pragma)? [6] _0
- Generate an assembly language listing?

B- 53-



- Include (or exclude) text in the private part of a
package specification?

- Output program statistics?
- Output information relating to compilation phases?
- Output intermediate language forms?
- Suppress certain levels (e.g., informational) of warning

messages?
- Suppress certain (or all) optimizations? --
- Syntax checking only (no code generation)? S
- Output of a cross-reference listing?

Input, Command Language/Documentation

1. Is the design of the command language documented?

2. Are user instructions provided for compiler invocation of
each host and target? Do the instructions include:
- All available options, with defaults and the effects of

using certain combinations of options?
- Use in batch and interactive modes?
- Invocation of separate compiler tools (if any)?

rj;p Command Language/Test Availability

1 Is a series of tests available to verify all command language ,.

constructs and options?

In, . User Assistance/Availability

L. Is any on-line user "help" facility available?
- Is it menu driven?
- Are there different levels of help (novice and

experienced)?
- Is its use documented in the users' manual?

2. Can the user temporarily halt the compilation at a designated
phase and examine the compilation up to that point? [6].
Can the user restart the compilation at the point from which
it was temporarily halted? [6]. If so, what are the results
and effects (if any)?

3. Can the compilation be immediately halted at a designated
phase[6]? If so, what are the results and effects?

4. Can the user request run time tracing for a particular
statement or range of statements? [6].

5. Can program flow analysis information be requested? [6]
(e.g.,monitoring of frequency of execution of segments of
code, timings of segments of code, etc.) [6].

6. Are the effects of executing a source statement which
contains certain levels of compilation errors explained in
the users' documentation [5]?

Input, User Assistance/Documentation

B-54

•."".



COPL QUESIONS

1. Is a users' manual available and written at a user's level of
understanding? Does it contain:

- Examples of source files with invocation examples and the S
resulting compilation listing?

- Examples showing linking and execution for the host and -
each target? (Or references which give instructions for
these operations.)

- Explanation of I/O procedures for the host and (in
particular) each target?

- A list, and explanation of, compiler limits, capacities, 0
and restrictions?
A list and explanation of each run time system routine
(for the host and each target)?

- Explanations that offer helpful information on run time
system options, such as the use (or non use) of certain
machine dependencies which might result in more efficient
execution or
o Any helpful information on preferred Ada programming

techniques for the host or target(s)?
o A description of parameter passing conventions?
o An explanation and examples of invocation of other

needed (or optional) tools? [5].
o A description and format of parameters and all

options which must be supplied to the compiler (or
its constituent tools) and the defaults if these are
not supplied? [5].

o A description of both batch and interactive use along
with any differences of results between the two'
[5].

Input, Source Statements/Capacity

1. What is the maximum number of source statements that can be
compiled?

) What is the maximum length (in characters) of one source
statement?

Input, Source Statements/Documentation

1. Is the permitted character set documented (for the host and
each target)? [5] .

2. Does the documentation show the allowed placement of every
implementation defined PRAGMA? [5].

Input, Source Statements/Usability

1. Are there any limitations or restrictions on the character
set that may be used for input source (e.g., substitution
characters)?

2. What are the conventions for writing machine code inserts"
[12].

Translation/Availability

-55 . . .



COMPILER QUSIN

1. What are the major phases in the translation process?

Translation/Documentation

1. Does the design documentation give the techniques and
algorithms used for translation?
- Is an overview of the translation process given?
- Are all of the modules used in the process documented?
- Is documentation (or references) provided for any special

tools that are used?

Translation/Efficiency

1. Is there any possibility of sharing between a global variable
and an actual param-ter of an array, record, or private type?
[12]

2. For type conversioi z, what is tht value of integer X, where

X:FLOAT:=1.5? [12].

3. Are there any checks made for possible infinite loops?

4. How is a library unit rpf'ognized as a MAIN program? [12].

5. How is a library unit initiated? [12].

6. What parameterization is allowed for a library unit (e.g
can it be a function), and if so, how are parameters received
and delivered? [12]. 0

7. Are there any restrictions on the form of, or statements
contained in, a MAIN program, as opposed to its subunits?
[12]

8. Under what circumstances will code or read-only data be
shared between different instantiations of some generic unit, 0
and what control (if any) can the user exercise over this?
[12].

9. What is the effect of using uninitialized variables? Does
the compiler flag or reject a program that depends upon such
variables [5]?

10. What is the interpretation of expressions that appear in
address specifications, including those for interrupts? [5]

11. What conventions are used for any system-generated names
denoting system-dependent components? [5].

12. Are compilation units (packages) automatically recompiled (if
necessary) in order to properly compile another compilation . -
unit? [S].

13. When a program is recompiled, is any use made of the previous
compilation to increase compilation speed? [5].

14. If a package specification is changed by adding a
declaration, does the recompilation make units which used
this package obsolete. (The compiler could optimize this

B-56

. ....... . . . . . . . . .



S

COMPILE Q ESTIO

case by noting recompilation.)

15. Are static (sub)expressions always evaluated (even when not
required by the language reference manual)? [5].

16. With the statement: A(I): A(I)+1; is the address of A(I)

evaluated once or twice? Also, is a special instruction
generated [5] ?

17. With matrix computations:
for I in 1 .. N loop

for J in I .. M loop
A(I,J) ...

end loop;
end loop;

Is the address of A(I,J) calculated each time by S
multiplication? Does hardware do this anyway? Or does the
compiler generate increments through the array (strength
reduction) ? [5] .

18. Assuming N and M above are constants (but not literal
values), is index-bound checking performed when A'FIRST(1)=l.
A'LAST (1) =N, etc [5]?

19. Is there a facility for providing a fully qualified name
(e.g., the result of the overloading resolution)? [5].

20. What is the effect of undeclared identifiers? [5].

Trans lation/Extendabi i ity .
1. What special tools were used for implementation of the

translation phase? For example, a parser generator, lexical
analyzer, etc. In what language(s) are they written?

Translation/Inter faces * -

1. Does the design documentation give the interfaces for the
translation modules?

Trans lation/Interoperabi 1 ity

1. Is any information resulting from the translation process
useful to other APSE tools? Is it stored in a separate file
for subsequent use?

Translation/Maintainability

1. Is the code and documentation of sufficient quality to
per form maintenance? S

2. If non-implementor developed tools are used, is maintenance
of these possible or available?

Translation/Proprietary

1. Are there any cost or proprietary restrictions on the tools -
used in the translation process?

Translation/Rehostability

B-5 7

.,. . .-... . . . . ; .: L ;i:- ;- :



. i ._ " - -. '. -.' . - , - - - " - -- - *.- .. - .- NL .
. -  

- . - . r _ . .- - -. . - - - - --

COMPILER W E " IONS

1. Are all of the translation modules machine independent, or is
some modification needed for a rehost?

2. If the translation tools or modules are not written in Ada,
are they available on the new host?

Translation/Resources Required

1. For each translation phase: What is the memory requirement?
What is the secondary storage requirement?

Translation/Robustness

1. What techniques are used to handle unforeseen error
situations during the translation process? Special exception
handlers, etc?

Translation/Test Availability

1. What internal compiler tests are available to verify the
correctness of the translation phases?

Translation, Analysis/Availability

1. In addition to Ada language requirements analysis, are any
other forms of analysis performed? Statistical analysis?
Program flow analysis?

2. Are there varying levels of severity for compiler-generated
diagnostics? If so, what are the levels of severity and what O
distinguishes one from another? [6].

Translation, Analysis/Documentation

1. Is design documentation available on the various forms of
analysis that are performed?

Translation, Analysis/Efficiency

1. What is the overhead during compilation for the various
analysis options?

2. What steps are taken to avoid "cascading" of compilation
errors? [5].

Translation, Analysis/Granularity

1. Are any of the analysis modules useful as separate tools?

Translation, Analysis/Interoperability

1. Is the analysis information available to other tools? Is it
stored on separate files? Is it in human-readable form?

Translation, Analysis/Proprietary

1. Are there any costs or proprietary restrictions on any of the
tools used for analysis functions?

Translation, Analysis/Test Availability

B-58



COMILE QUESTON

1. Have all compiler diagnostics been verified to insure that
the text is inconsistent with the actual error? 0

Translation, Analysis/Usability

1. Is the use of the analysis facilities (with options)

described in the users manual? Is the interpretation of the
information described?

Translation, Intermediate Forms/Availability

1. What are the intermediate representations of the source
program during the translation phases?

2. Are any standard intermediate languages (such as DIANA) used?
[5].

Translation, Intermediate Forms/Documentation

1. Are the intermediate forms documented? The design and
implementation for each translation phase should be given.
Is the detail and quality sufficient to permit understanding' .

Translation, Intermediate Forms/Extendability

1. In what language(s) are the modules that produce the
intermediate forms written?

2. Are any non-implementor developed tools used to produce or
interpret the intermediate form?

Translation, Intermediate Forms/Interfaces

1. What is the interface structure of the intermediate forms?
[5].

2. Are the input and output interfaces for the modules that
process intermediate forms explained?

Translation, Intermediate Forms/Interoperability

1. Are any of the intermediate forms useful to other tools, such
as a statistical analyzer, etc? S

Translation, Intermediate Forms/Proprietary

1. Are there any costs or proprietary restrictions on any of the
tools used for intermediate forms development and processing?

Translation, Intermediate Forms/Rehostability

1. If the modules used to produce the intermediate forms are not
written in Ada, can they be made available on another host'

Translation, Intermediate Forms/Test Availability

1. Are any internal tests available to verify the correct
intermediate form sequences?

Translation, Intermediate Forms, Usability

B-59



S

COMPLER QUSIONS

1. Are any intermediate forms results accessible to the user (as
an option) (5]. Is there a human-readable form? (5]. Can
the representation be written to a file for subsequent use?

Translation. Optimization/Availability

1. What optimizations are performed in the front end? (5].

2. Can programs be optimized via code sharing of generic units,
merging of compilation units, etc? [12]

Translation, Optimization/Documentation

1. Does the design documentation describe the algorithms and
techniques used for optimization implementation?

Translatic n, Optimization/Extendability

1. Are any additional optimizations planned?

Are any non-implementor developed tools used for
optimization? -

B Translation, Optimization/Rehostability

1. If the modules that perform optimization are not written in
Ada, can they be made available on the new host?

Translation, Optimization/Test Availability

1. Have tests (benchmarks) been run to verify the memory (or
efficiency) gained with and without each of the optimization
options? [6] .

Translation, Optimization/Usability

1. In addition to the PRAGMA OPTIMIZE (Annex B, (7]), are there
any additional options to select or turn off other
optimizations?

2. Can a user specify levels of optimization for memory and/or
efficiency as an option (e.g., additional PRAGMAs)? (6].

Translation, Symbol Table/Capacity

1. For each symbol table entry, list the user capacity that is
available (if applicable) (e.g., maximum number of
identifiers). Can any of these limits be set by the
installation or user?

Translation, Symbol Table/Documentation .

1. Is the structure of the symbol table design described-.'

2. Is each symbol table entry (size and type) described?

3. Are the techniques used to build the symbol table described'

Translation, Symbol Table/Efficiency

B-60

.- " • .. -



CO L QUESTI

1. During compilation, is the symbol table kept in memory or on
secondary storage? Or does this depend on the size of the
compilation unit?

2. During the compilation process, how are symbol table entries -..-.

accessed?

Translation, Symbol Table/Interoperability

1. Is any of the symbol table information used (or useful) by
other non-compiler tools?

2. Can other tools access the internal symbol table information?

3. Is any symbol table information stored in separate files for
subsequent use (possible in a reformatted form)? S

Translation, Symbol Table/Resources Required

1. What is the minimum size of memory and secondary storage
needed for the symbol table for one compilation unit?

Translation, Symbol Table/Test Availability 0

1. Are there any internal tests available to verify the
correctness of the symbol table entries?

Translation, Symbol Table/Usability

1. Are there any user options for access of, or use of, the
symbol table information? If so, are they described in theusers' manual?

Code Generation/Availability

1. Are any target code generators available other than the host?

2. Is PRAGMA SUPPRESS supported? [12].

3. Is PRAGMA ELABORATE supported for user library units? [12]

Code Generation/Capacity

1. What is the limit on the size of the object module that can
be generated?

Code Generation/Documentation

1. Is there a list of generated code sequences for each language
production?

2. Is the design of the various methods of passing parameters
documented [5]?

3. Is the mechanism for returning results from a subprogram
given (especially where the result is a record or an
unconstrained array type) [5]?

B-61



4. Is the implementation of generic subprogram parameters
described [5]?

Code Generation/Efficiency

1. What is the general methodology or techniques used for code
generation?

2. What procedures were used to insure that the most efficient 0
code sequences were selected for each language construct
(e.g., expert knowledge of the machine instruction set)?

3. What techniques are used in range and constraint checking'
[5]

4. Is space allocated for variables declared but not used? [5] S

5. What is the general overhead for procedure calls and returns'

6. How is PRAGMA INLINE treated? [5].

7. What are the instruction sequences for procedure calls and
returns?

8. How many instructions are generated at scope entry for
exception handling? [5].

9. If the only generic parameter is a subprogram, is the
executable code duplicated for each instantiation of the
generic code package (subprogram)? [5].

10. If a machine has only (say) two predefined integer types, are
just two copies made of a generic package/subprogram with the
sole parameter? The same question for floating types. [5] ..-.-

11. Are any additional object code or data requirements imposed 4 0
by the use of generics? (Especially when code sharing is inuse?) []

12. With a paramaterless generic package, is the executable code
duplicated for each instantiation? [5].

13. Under what circumstances are parameters passed by reference S
or copy [5]?

14. For scaler types, are range checks applied to every
subexpression or only at final assignment? [12].

15. Are the following forms of minimizing constraint checking
9 performed [5] ? •

I: INTEGER range -2 . 2;
J: INTEGER range 0 10;
type AT is access T;
V AT;
I:= 22 mod 3;-- no checks needed
I:= J; -- 2 check on top limit only •
V:= new T(...);
if V.L = ... then -- no null access check

-4 current variant is correct

. ~.- . .-- . .*.* * . %. - . . -



16. Are subprograms which are declared in a package but not usedloaded into the program? [5]. 0

17. If a subroutine is only called once, is a subroutine call,
return sequence generated, or is the subroutine code just
planted in line [5]?

18. What are the techniques of implementation of PRAGMA SUPPRESS?

19. Does the compiler generate code from source text which has
resulted in compiler-generated warnings? If so, is an option
provided to enable the user to suppress code generation in
such cases? [6].

20. What precision and ranges of accuracy are supported for
SHORTFLOAT and LONGFLOAT types? [12].

21. For fixed point types, what is the range and accuracy of
ACTUALDELTA? [12].

22. Is there a limit on the accuracy of real literal expressions-
S[5]. S

23. What is the approximate ratio of generated machine
instructions to an Ada statement?

Code Generation/Granularity

1. Are any of the code generation components useful as separate
tools?

Code Generation/Hardware

1. Does the code generator take advantage of special host or
target features such as address calculations?

Code Generation/Interfaces

1. Is the level of interface documentation (in the code and
specifications) sufficient?

Code Generation/Interoperability

1. In addition to the object module, is there any information
produced by the code generation phase that is useful to other
APSE tools?

Code Generation/Maintainability

1. Are there any special tools (non-implementor developed) that 0

are used for code generation? If so, is maintenance
available?

Code Generation/Proprietary

1. Are there any proprietary or data rights restrictions on the 0
use of, or distribution of, any of the modules or tools used
in the code generation process?

Code Generation/Rehostability

S W d) ' ..- -. .. -... . ..: A -



1. Which code generation modules need to be modified for a
rehost? Are host dependencies given in the documentation and S
code?

Code Generation/Retargetability

1. Which code generation modules need to be modified for a
retarget? Are target dependencies given in the code and
documentation?

Code Generation/Test Availability

1. What tests or techniques are used to verify correct code
sequences?

2. Are there any tests (benchmarks) that are used to determine 0
object code efficiency against identical hand-coded assembly
language programs: If so: Are the tests available to users'
What are the results?

Code Generation/Usability

1. Are there any circumstances under which it is possible to ]
share code between two different generic instantiations
(including any user control that is available)? [5].

2. Is there any method of relating the object code to the source
program? [5]

Code Generation, Debugging/Availability

1. Are user debugging facilities provided? If so:
- What functions are implemented?
- Is the debugging at the high-level language level or at

the machine level?
- Are any separate target-specific debugging facilities S

provided?
- Are any system debugging facilities available through the

compiler? (These are generally at the machine level.)

Code Generation, Debugging/Documentation

1. Is the design of the debugging facilities documented? Is
this documentation a part of the compiler design
specifications or are they independent documents?

Code Generation, Debugging/Efficiency

1. In what ways might optimization adversely affect the use of 0
the symbolic debugger on the target machine?

2. For each separate debugging function, what is the compile . -

time and run time overhead? For example, what is the ratio
for run time with and without this debugging feature?

3. For each separate debugging function, what are the additional
memory requirements?

i-64
0



COMPILER QMtMIQN

4. What are the implementation techniques for the debugging
functions? For example, at the start of a statement machine
code sequence, is code inserted to branch to a debugging
module?

Code Generation, Debugging/Granularity

1. Are the debugging facilities separate tools or is the code
built into the compiler?

Code Generation, Debugging/Hardware
1. Are there any special hardware dependencies for the debugging

functions?

Code Generation, Debugging/Interfaces 0

1. What special compiler interfaces are needed for the debugging
functions?

If the compiler and debugging facilities are separately
developed, is there a formal interface description between
the two?

Cod .neration, Debugging/Interoperability

Are any of the results of the debugging capabilities
available and/or used by other APSE tools? For example,
statistical analysis functions.

Code Generation, Debugging/Proprietary

1. Are any of the debugging facilities propr .etary? For
example, supplied by the system vendor?

Code Generation, Debugging/Rehostability

1. Which debugging modules need to be modified for a rehost?

Code Generation, Debugging/Retargetability

1. Which debugging modules need to be modified for a retarget?

Code Generatiori, Debugging/Resources Required

1. In addition to memory, are there any other resources needed
to use the debugging functions (disk, tape, etc.)?

Code Generation, Debugging/Test Availability

1. Are there any internal compiler tests to verify the
correctness of the debugging functions? If so, is their use
explained?

Code Generation, Debugging/Usability

1. Is the use of the debugging facilities adequately explained' 0

1-65

9.



CQMFT. L.RQLULSTIQNU

2. Is any on-line assistance for the debugging functions
available?

Code GeneraLio,,, Optimization/Availablity

1. Ari '-here any target-specific optimizations implemented?

2 At what stages in the generation of object code can
taryt-specific optimizations be made? [5]. Can additional S
optimization stages be incorporated, either at the outset or
later if proved necessary? [5].

3. Are there any standard tools, a! -rithms or components to aid

in target-specific optimizationz? [5].

Code Generation, Optimization/Documentati.u,,

1. Are the target-specific optimizations documented in both the
design and users' documentation at the appropriate level of
understanding? Are implementation techniques explained?

Code C.2neration, Optimization/Efficiency

1 How, if at all, does target-specific optimization interact
with any front-end optimization? [5].

2. Is dead code eliminated from if and case statements? If so,
is the user notified? [5].

Code Generation, Optimization/Hardware

1. Are there any target-specific optimizations that take
advantage of hardware features and efficiencies?

Code Generation, Optimization/Proprietary

1. Are any of the target-specific optimization modules
proprietary?

Code Generation, Optimization/Retargetability

1. Which target optimization modules need to be modified for a

retarget? S

Code Generation, Optimization/Test Availability

1. Are tests available to verify the efficiency gained with
target-specific optimizations? If so, is their use and the
interpretation of results explained?

Code Generation, Optimization/Usability

1. Are any of the target optimizations user selectable as
options?

2. Does the users' documentation give any helpful information on
preferred coding techniques to take advantage of compiler
target optimizations?

Output/Availability

B.- 66



COMPILER QUSIN

1. Is there a tool that shows the structural relationship
between the modules of a compiled system? [5].

2. Is pretty printing of Ada source text possible?

3. Is reformatting of Ada source test possible? [6]. Can
user-sur lied packages replace or provide the facilities of
Questions 2 and 3? [5].

4. Can additional output options be provided by the user? [5].

5. Can the compiler generate a history file which records who
performed the compilation and when it was performed? [6].

6. Does the compiler generate a file which documents the modules
and associated revision levels which were used to produce a
particular configuration? [6]

Output/Documentation

1. Does the design documentation give the implementation
techniques of the various compiler outlets? This should show
the data structures, as well as the modules that perform the
outputs. Included should be outputs that are used for
internal compiler use (e.g., compiler debugging and
maintenance).

2. Does the users' documentation explain the compiler outputs:
- Examples?
- Instructions for use and interpretation? 0
- Various user options?

Output/Hardware

1. Do any of the compiler-generated outputs depend on specific
hardware peripheral devices? -

Output/Inter faces

1. Are output interfaces documented in both the design
documentation and the code?

Output/Resources Required

1. Does the design and users' documentation give an estimate of
resources (in particular, secondary storage) for any special
outputs (e.g., statistics, flow analysis, trace analysis.
etc.)? The user should be cautioned on outputs which may
generate large volumes of data.

Output/Test Availability

1. What internal compiler tests are available to verify
correctness of outputs?

Output/Usability S

B-67

S -

.......................... •.. .. . . . . .. . . . .



1. Can error messages be redirected to a user-defined file?
(12].

2. Is there a facility which allows association (or link:) of a
source listing with the latest object module? [5].

3. During interactive use, are error messages displayed to the
user as the compilation proceeds?

4. Is the output of intermediate language forms reducable and
usable?

Output, Analysis/Availability

1. In addition to source program error analysis, what other 0
forms of analysis are available for user output:

- Program flow analysis?
- Statistical analysis?
- others?

Output, Analysis/Documentation 0

1. Is the overall structure of error and warning messages
documented? [5]. e.g., Fatal, Serious, Recoverable,
Warning, Informational, etc. (The documentation should show
the message number and the text that is output for each
error).

Output, Analysis/Extendability

1. Can any user packages be substituted for compiler-implemented
analysis outputs: Different output formats? Redirect to
other devices?

Output, Analysis/Granularity

1. Are any of the analysis output modules useful as separate
tools?

Output, Analysis/Interfaces

1. Are the interfaces of the analysis tools documented in the
design documentation?

Output, Analysis/Interoperability

1. Are any of the analysis outputs or information useful to
other APSE tools? -

Output, Analysis/Rehostability

1. Are any machine dependencies for modules that process and
produce analysis outputs documented in the design ...
documentation?

Output, Analysis/Test Availability

B-68

•... .-.•.

- - - - --... . . .- . .



COMPL ER QUESTIQN

1. Are internal tests available to verify correctness of

analysis functions and outputs?

Output, Analysis/Usability

1. Following are warning messages that are considered to be
useful to the user. Are they given?
- A statement whose static properties guarantee that an

exception will be raised. [5].
- An unusually expensive construct. [5].
- A real expression whose accuracy is inherently low. [5].
- Declared identifiers that are not used. [5].
- Elimination of unreachable code. [5].
- Declared packages that are not invoked. [5].
- Erroneous or poor programming practices. [5].
- Identifiers used but not initialized. [5].
- Infinite loops. [5].
- Ignored (unimplemented PRAGMAs) [5].
- Code motion affecting debugging. [5].

2. Is any user information provided which gives the user a
restart position to allow recovery from compilation errors.
[5].

3. Is any information output to aid the user in resolving

ambiguous overloadings? [5].

Output, Cross-Reference/Availability 0

1. Is there an option to obtain a cross-reference listing?

Output, Cross-Reference/Documentation

1. Is the format, design and implementation techniques for the
cross-reference information described in the design -
documentation?

Output, Cross-Reference/Test Availability

1. Are internal tests available to verify the correctness of the
cross-reference information and output?

Output, Cross-Reference/Usability

1. Is the use and interpretation of the cross-reference listing
explained in the users' documentation?

2. Does the cross-reference listing include: _0
- Alphabetical list of identifiers with statement numbers ..

of where declared, initialized and used? All
identifiers' types and attributes?

- Does the output indicate if the identifiers were brought
in from a package?

3. Are there any user options when selecting a cross-reference

output?

Output, Listing/Documentation

B-69



COMPILR Q E! Y N

1. Is a list of all outputs, options and defaults for the
listing given in the users' documentation:
- Examples?
- Instructions for use?
- Instructions for interpretation?

Output, Listing/Test Availability

1. Are internal tests available to verify the correctness of
listing outputs?

Output, Listing/Usability

1. Does the listing include:
- The source program with statement numbers? S
- The total memory space of the module?
- The CPU compilation time?
- The compiler version number and date of release?
- An image of the compiler invocation commands?
- A list of internals, externals and packages (including

run-time system modules)? ...
- Compilation units (packages) made obsolete by the 0

compilation of a unit? [5].
- Any compilation units that were automatically recompiled

in order to properly compile another compilation unit?
[5].

2. Is an optional assembly language listing available? Does it
include:
- Generated machine instructions (opcode, operands,

appropriate comments, etc.)?
- The compiler-generated statement number for the first

machine instruction of the sequence?
- Calls made to run-time system routines? [6].
- Calls made to system routines? ....
- Assembler mnemonics?

3. Is the statistics information readable and useful?

4. Does the listing state that certain levels of errors or e
warnings were suppressed (as selected by the user)?

5. Do error messages indicate the statement number and column of
the error (or other suitable identification)?

6. Is any information (other than the error message) provided to
help the user find the cause of the error? 0

7. Does the listing give optimizations that were used and/or

suppressed by the user?

Output, Object Module/Documentation

1. For the host and each target:
Is the design of the object module documented .-.

(implementation techniques and format)?

I -7(- S



COMPILER QUESIONS

- Is the format of internal references from one compiledunit to another given? [5].
- Does the design and users' documentation give the

conditions under which an object module will or will not
be produced (e.g., certain levels of errors)?

Output, Object Module/Interfaces

1. How are interfaces between the object module and the next
step towards execution handled? Passed directly to the host
or target linker? A Linker/Loader?

2. Is there a document (e.g., interface control document) which
fully describes the interfaces?

Output, Object Module/Rehostability

1. Which modules that process or produce the object module needs

to be modified for a rehost?

Output, Object Module/Retargetability

1. Which modules that process or produce the object module need
to be modified for a retarget?

Output, Object Module/Test Availability

1. Are there any internal tests available to verify the
correctness of the object module?

utput, Object Module/Usability. -"-

t . Is there an option which allows suppression of object module

generation upon occurrence of certain levels of errors?

2. Does the compiler produce an object module even if certain
errors are present? If so, under what circumstances? [5].

3. Is the format and content of the object module given in the
users' documentation? Are references or explanations given
for linker information (e.g., link item types)? This is
needed for user understanding and debugging.

4. How is downloading from the host to the target accomplished?
(12].

5. Are object modules linked by the host (or target) linker, or
is an an APSE linker required? [5]

RTS/Availability

1. Does the RTS depend on the host (or target) operating system
functions, or could it operate on a "bare" machine?

2. Are system initialization (startup) functions provided?
(12).

B- 71

' '_. .'' '. _.'' '. .'' '. ..' ''_ -'. _.' -- ,.t' '. ..+.'. ._. _ - " , _ / _ / ..., _ ..,., _' ', ., ',, ' _, _' " ' _- -' . ', , ' .' . - - - -. , ._t + ,



COMP T, E QUSIQNS

3. What values are supplied in declarations in PACKAGE SYSTEM
for the following: ADDRESS, NAME, MEMORY, MAXDIGITS,
MAXMANTISSA? [12].

4. Are there any facilities for performance measurements for CPU
time utilization, dynamic memory utilization, I/O channel
utilization, etc? [12].

5. What system status information is accessible to Ada programs
from the run-time environment? [12].

RTS/Documentation

1. Is a detailed description of the design of each RTS module
given for the host and each target?

2. Is any information given to allow modification of the RTS to
provide better efficiency, performance, etc., for different
applications?

3. Does the documentation give the source language that each
module is written in?

4. If any of the RTS modules are non-implementor developed, is
documentation available?

RTS/Efficiency

1. Are RTS modules that are not needed for a program still
included in the object module?

2. Does the implementation use Julian dates versus calendar
dates? [12].

3. For clock initialization/synchronization, what are the values
of FINEDELTA and TICK? [12].

4. How much CPU time is expended while accessing the system
clock? [12].

5. Does the initialization routine free itself up to become -
overlayed with working storage? [12].

6. How is initiation and communication with a main program
handled? Are there any restrictions? [5].

RTS/Extendability

1. In what programming language(s) is the RTS written? [12].
S

2. If not written in Ada, are there plans to translate the RTS
to Ada?

3. What percentage of the RTS is in assembler language?

4. Are there any standard components available to help in the
construction of the RTS (e.g., tasking monitor written in S
Ada)? [5].

RTS/Granularity

15-72

. . , .



COMPLER. QUESIONS

1. Are any RTS modules separately selectable and useful as other
tools?

RTS/Hardware

1. Are any hardware diagnostics (e.g , memory tests) performed?
(12]

2. Can a user effect orderly shutdown of the system? [12].

RTS/Inter faces

1. Do the compiler-invoked RTS modules interface with the host
operating system or the KAPSE?

2. Are the interfaces for each RTS module documented?

RTS/Maintainability

1. If RTS modules are supplied by other than the implementor, is
sufficient maintenance documentation available? Or must the
supplier perform maintenance?

RTS/Proprietary

1. Are source listings of the RTS available? What proprietary

rights are involved? (12].

2. Are there any proprietary rights to any of the RTS modules?

RTS/Rehostability

1. Which RTS modules need to be modified for a rehost? Are " "
instructions available?

RTS/Retargetability

1. Which RTS modules need to be modified for a retarget? Are
instructions available?

2. For a retarget, does the presence of other tools in the
compilation system or APSE affect the back end [5]?

RTS/Resources Required

1. What is the total memory space of the entire RTS?

2. What is the memory space of each RTS module?

RTS/Robustness 0

1. What general forms of recovery are supported for machine.
system or process failure?

RTS/Test Availability

1. What internal tests are available to verify the correctness _
of the RTS modules?

RTS/Usabi 1 ity

B-73 •

-' -' '' .-? ' ' .. ... i- '- ' yl .' -i i . " .l .' 'i l i i i". " i ,-.- -" ." .- . , - i ".- -'. i--. .', " . " ." - " ." '". " i i - -. ' -'i ' ..



QT ES S

1. Can a user access the RTS (operating system) directly? [12] _

2. Can a user substitute their own RTS packages for
compiler-supplied packages? If so, are instructions
available?

RTS, Memory Management/Availability

1. Does the implementation support both primary and secondary 0
stack management? (12].

2. What garbage collection capabilities are available for
deallocating working storage? [12].

3. Does the RTS support memory partitions, overlays, swapping
and program segmentation? [12]. 0

4. Is the use of virtual memory supported? [12].

Does the implementation provide for memory protection for
both code and data? [12].

0 Does the implementation Support the use of checkpointing 0
(e.g., saving the state of the system)? [12].

RTS, Memory Management/Capacity

1. What are the minimum and maximum allocations of working
storage that can be made for individual tasks, subprograms
and packages? [12].

2. Are there any restrictions on the maximum memory space for -
ACCESS types? [12].

RTS, Memory Management/Documentation

1. Are the RTS memory management alqorithms and techniques
documented in the design documentation?

2. Does the documentation give references to system

documentation relating to memory management (if applicable)?

3. Is a description of primary stack management given? [5]

4. Is a description of secondary stack management (if any)
given? [5].

5. Is the method of acquiring and releasing space for tasks
documented? [5].

6. Is the method of ACCESS type collection management
documented? [5].

7. Is a description of heap management and garbage collection
given? [5].

RTS, Memory Management/Efficiency 5

j -74

• ~~~~~...................... ....... . .. .... .............. ...... .. -.... .-. -...... ..... ... ,......-.....
-''" ' -" -''" . -'- " "',''-''. _'. _ ' .'_ . . . .. . ~i " . .. ',. : . .. . . 'j. . . . . . . . . ' ' •- " - '- - ' -



COMPILER STO

1. What are the techniques and algorithms for allocating working
storage? [12].

2. Is deallocation of working storage automatic in all cases?
When does deallocation occur? [12].

3. What techniques are used to determine the amount of unused
working storage still remaining to be assigned? [12].

4. Is working storage allocated in blocks which are (or can be)
of unusual length? [12].

5. What techniques are available for detecting fragmentation
problems in the working storage area? [12].

6. Is working storage periodically compacted or coalesced? q

7. If paging or segmentation is supported, how are thrashing
problems dealt with? [12].

8. What type of control is afforded by the LENGTH CLAUSE? [12].

9. What allocation scheme is used for ACCESS types (e.g., stack, S
dynamic, fixed, etc.)? [12].

TO. For record representation clauses, will objects in a
collection always have the same length if the designated type
is an "Unconstrained ARRAY" or an "Unconstrained RECORD" type
with discriminants? [122. Are any restrictions placed on
the use of alignments? [12].

RTS, Memory Management/Hardware

1. What hardware-dependent features are used for memory
management (e.g., protection registers, virtual address
translation mapping registers, etc.)?

RTS, Memory Management/Interfaces
1. Do the RTS memory management modules use (or interface with)

any system-supplied software?

RTS, Memory Management/Test Availability S

1. What internal tests are available to verify the correctness
of the memory management functions?

RTS, Memory Management/Usability

1. May a user statistically assign an amount of workng storage 0
after compilation, but before run time? [12].

2. May a user optionally specify memory protection for data
segments?

RTS, Task Management/Availability

1. Is tasking performed as part of the compiler RTS or is it
performed by the host (or target) operating system? '

B-75

. ' o. i " • • • '.S .



COMPILR QUSTION

2. Are priorities used for the following operations: Queuing
for rendezvous, queuing for real memory, task start-up
elaboration, raising exceptions, terminations, input and 0
output? [12].

3. Is expedited dispatching supported? [12].

4. Is the use of privileged tasks supported? If so, are there
several levels of privileged states? [12].

RTS, Task Management/Capacity

1. What are the maximum lengths for the TASK queue and the DELAY
queue? [12].

RTS, Task Management/Documentation

1. Is the design of the task management functions given?

RTS, Task Management/Efficiency

1. What range of context switch times is considered to be
typical? [12].

2. What is the maximum time duration in which all interrupts may
be inhibited? [12].

3. Are all tasks in a library package required to "terminate"
upon completion? [12].

4. What scheduling disciplines are used (e.g., FIFO, round robin
(with time slicing), etc.)? [12].

5. What restrictions are placed on the range of ENTRY families?
[12].

6. What overhead times are incurred while creating, -

interrupting, terminating and/or aborting a task? [5].

7. What are the circumstances for a reschedule (and its
duration)? [5].

8. In a message-based system, how are intermediate tasks
("agents," "messengers") compiled? In many cases, such tasks
can be removed. Is such optimization handled? [5].

9. How is stack and heap space acquired for a new task in a
multi-tasking program? [12].

10. What is the method of implementing the Ada rendezvous 0
mechanism? For example, is an Ada-run time kernel used? Or
does the implementation use the target operating system
facilities? [5].

11. What is the method of passing parameters in a rendezvous?
[5].

12. In a rendezvous, is the rendezvous code executed by the
owning task, or can it be executed by the calling task? [5].

1 -

.-. . .



COMPILR Q!JFZIL=1

13. For a DELAY statement, what is the RANGE and DELTA for
DURATION? [12).

14. What is the accuracy of the DELAY statement? [5].

15. What is the overhead (time) to access the clock in DELAY
statements? [5]

16. What is the accuracy of the real-time clock? [5]. 0

17. What is the method of associating internal interrupts with
task entries? [5].

18. Are there any implementation task management optimizations
that have been achieved? [5].

19. How much space is required for a general and for a passive
task? [5].

RTS, T-'- Management/Interfaces

.hat is the interaction between task management and exception
iandling? [5].

RTS, ['T- ' Management/Robustness

I What capabilities are available for detection of CPU overload
conditions? [12].

.. What capabilities are available for detection of CPU deadlock
:'onditions? [12].

3. What capabilities are available for detection of CPU
indefinite postponement conditions?

RTS, Task Management/Test Availability S

1. What internal tests are available to verify the correctness
of task management functions?

RTS, Task Management/Usability

1. Does the implementation maintain an audit trail (e.g., in an S
end- around buffer) giving the order in which tasks are
initiated, suspended, terminated and/or aborted? [12].

- How does the user obtain this information for real-time
recording, and/or off-line diagnosis (e.g., following
crashes)? [12].

- Are entries time tagged? If so, what is the granularity
of time? (12].

- Do these functions result in real-time processing
overhead, or are they performed parallel to the task "processing? "- -

RTS, Task Management, Distributed Processing/Availability *
1. Is distributed processing supported? If so, what is the

general implementation technique (e.g., master/slave,
symmetrical, etc.)?

B-77



S

CQMI1ERQUESTIONS

2. Is rendezvous supported in distributed processing? [12].

3. Are procedure calls to a remote processor supported? [12].6

RTS. Task Management, Distributed Processing/Capacity

* 1. How many distributed processors are supported?

2. What is the limit on the amount of information which can be
exchanged between tasks during a rendezvous? [12].

*RTS, Task Management, Distributed Processing/Documentation

1. Are the design and implementation techniques for distributed
processing documented?

RTS, Task Management, Distributed Processing/Efficiency

1. What typical time delays (overhead) are there for rendezvous
between processors? [12].

2. In which processor(s) do the RTS modules reside?

1. What support is available for clock synchronization between
processors?- [12].

k.How are task termination dependencies enforced? [12].

How are tasks initiated in another processor? [12] .

RTS. !ask Management, Distributed Processing/Hardware

*1. Does data transfer between processors occur via calls or

through high-speed memory' [12].

RTS, Task Management, L,-stributed Processing/Resources Required

I. What is the overhead for the distributed processing functions
in terms of memory requirements?

RTS, Task Management, Distributed Processing/Robustness

1. What internal safeguards have been implemented to detect and

recover from own or system errors?

RTS, Task Management, Distributed Processing/Test Availability

1. What internal tests are available to verify the correctness
and efficiency of the distributed processing functions? Have
the tests been executed using more than one processor? Are
test results available, or can they be run by the user?

RTS, Task Management, Parallel Processing/Availability

*1. Is parallel processing supported by the RTS? If so, what are
the general implementation techniques? How many parallel

processors are supported?

RTS, Task Management, Parallel Processing/Capacity

B-78

"l

.*K~* ** ~ ..]- -. ____ ____



COMP2ILER~ QUESTIONS

1. What are the maximum number of tasks that can execute in
parallel? Has this number been verified? 0

RTS, Task Management, Parallel Processing/Documentation

1. Is the design of the algorithms and techniques of the
parallel processing modules documented?

RTS, Task Management, Parallel Processing/Rehostability

1. Which parallel processing modules need to be modified for a
rehost?

RTS, Task Management, Parallel Processing/Retargetability

1. Which parallel processing modules need to be modified for a 0
retarget?

RTS, Task Management, Parallel Processing/Test Availability

L. tests available to verify parallel processing operations?
Do these tests simulate, or have they been executed with
tasks running in parallel on more than one processor? 0
On how many processors have the tests been run?
Are test results available?

RTS, ;*xk:-._:iion Handling/Availability

1.. '%:at types of recovery from either machine failure or process •
;;ilure are supported? [12].

2. )oes the implementation support the use of PRAGMA SUPPRESS
f,,r the following CHECKs: ACCESS, RANGE, DISCRIMINATE,
iNDEX, LENGTH, DIVISION, OVERFLOW, ELABORATION, STORAGE?
(12]. If so, how are exceptions handled? -

RTS, Exception Handling/Documentation

1. Does the design describe the way in which exception numbers
are allocated? [5].

2. Is the mechanism used to bind a raised exception to the
appropriate handler described [5]?

RTS, Exception Handling/Efficiency

1. What are the techniques and overhead associated with
exception handling? [12].

2. How are "orphan" processes treated during exception handling?
[12].

3. Under which conditions are the exceptions NUMERICERROR,
PROGRAMERROR OR STORAGEERROR raised? [5].

RTS, Exception Handling/Hardware _

B-79

0 0•



COMPILE QUESTION

1. What are the interactions between exception handling and the
host or target hardware? [5).

RTS, Exception Handling/Interfaces

1. What are the interactions between exception handling and the
host or target operating system? [5].

RTS, Exception Handling/Test Availability

1. Are internal tests available that force an exception to
invoke each exception handler?

RTS, Exception Handling/Usability

1. Is exception handling described in the users' documentation? S
2. Are any user options regarding exception handling given in

users' instructions?

RTS, Data Management/Availability

1. Is machine I/O implemented as part of the RTS? "

2. What low-level I/O drivers are supported? [12].

3. Is asynchronous I/O supported for character and
block-oriented devices? [12].

4. Is there text I/O support for variable spacing margins, page ]
numbering, headers and footers? [12].

5. Is formatted I/O (analogous to COBOL or FORTRAN) supported?
[12]

6. Does the implementation use backing storage for I/O (e.g.,
spooling)? [12] .

7. What type of support is available for creating non-standard
(unique) device drivers? Must unique device drivers be
written in Ada? [12].

8. Is there an I/O driver in the target run-time environment for
communication with the host computer which can be used for
target data collection (in real time)? [12].

9. Does the console monitor provide capabilities for clearing of
console screens? Is there a quick response command? [12].

10. Is there support for binary I/O? [12]. 0

11. What restrictions are there on the types that can be
instantiated for I/O? [12].

12. Are there library routines for comparing one file with
another? [12] .

13. Are there library routines for copying from one device to
another? [12]

11-80

% .,7



F ~~~- "-'-"-'--- .•

LS

COMPILER QUESTIONS

14. What types of file organizations are possible (e.g., indexed.
sequential, etc.)? [12]. 0

15. Does the I/O implementation support parallel disk I/O,
look-ahead or overlap features, or shadow recording features?
[12].

16. Can one assign logical units to physical devices? [12].

17. Is there support for data base save/restore? [12].

RTS, Data Management/Capacity

1. For TEXT I/O, what are the limitations of the following:
Lines/page, characters/line, and pages/file? [12]. 0

2. What are the minimum/maximum record sizes and file sizes for
the supported devices? [12].

3. Can the maximum record sizes (as established by JCL) be
overridden by program specification statements? [12].

4. What buffer sizes are assigned to standard peripheral devices .
(line printer, disk, tape, CRT)? [12).

5. What are the maximum lengths of the various I/O queues? . -
[12].

RTS, Data Management/Documentation

1. Is the description of the I/O system for the host and each
target given? [5].

2. Does the design documentation describe the representation of
the various Ada types? [5].

RTS, Data Management/Efficiency

1. Must disk records be moved from a buffer area prior to data
manipulation? [12].

2. For low-level I/O, must data be moved from buffer areas prior
to manipulation? [12]. ..

3. Following completion of an I/O request, is control always
returned to the requestor? (12].

4. Can another task be requested to receive control following
completion of an I/O request? [12].

5. How are priorities used for I/O requests? [12].

6. How is the association of peripheral devices with files
established (e.g., can there be more than one disk unit)-
[12).

7. What meaning is associated with the term "external file?" e
(12].

B-81
. .S

..................................



COPIE QUESTIONS

8. Are file contents always stored contiguously? [12].

9. Does the implementation recognize situations wherein a
requested record already resides in memory and need not be
retrieved from disk? [12].

10. Is directory information retained in main memory, or is it
stored on disk until needed? [12].

11. What are the effects of using PRAGMA PACK in conjunction with
other representation specifications? [12].

12. What happens to files (open/close) after execution
completion? [12].

13. In record representation clauses, what restrictions are
placed on the use of alignments, component clauses, etc?
[12]

14. How are array types accessed? [5].

15. How are array types Mapped? [5].

16. How are access types mapped? [5].

17. How are scalar types and subtypes mapped? [5].

18. How are non-discriminated records mapped? [5].

19. What effect on mapping will discriminants have on arrays?
[12].

20. What sort of disk access times can be reasonably expected?
[12]

21. What sort of disk access algorithms are applied (e.g., _
overlap seek, rhythmic seek from outside track towards center
and back so as to minimize vibration seek, rhythmic seek or
interleaved use of disk tracks)? [12].

22. How extendable are file structures? [12].

23. How are I/O buffers flushed automatically? [12]. 

RTS, Data Management/Hardware

1. For an interrupt entry, what interpretation is given to the
value of an address specification? [12].

RTS, Data Management/Interfaces 0

1. Are I/O interfaces to a KAPSE or to the host operating
system?

2. Are all interfaces for I/O functions documented?

RTS, Data Management/Rehostability 0

B-82

. . . . . . . . . . . . . . . . . .. .•.,.•



COMPILE QUS.. I

1. Which data management modules need to be modified for a
rehost?

0
RTS, Data Management/Retargetability

1. Which data management modules need to be modified for a

retarget?

RTS, Data Management/Robustness

1. What are the effects of plugging/unplugging peripherals?
[12]

RTS, Data Management/Test Availability

1. Are internal tests available to verify I/O functions and
other data management implementations?

RTS, Data Management/Usability

1. Can a user request that control be returned to the calling
module following an I/O request? [12].

2. Can a user cancel I/O requests? [12].

3. What are the naming conventions for files? (12].

4. Is there support for data security features (e.g., user
checking, procedure validation, data sensitive checking.
etc.)? [12]. 0

5. Can a user modify the file directory on line? [12].

6. Can a user redirect I/O from a user-specified file? [12].

7. Are there any restrictions on the types that can be
instantiated for I/O? [5].

RTS, Mathematical Functions/Availability

1. What user library functions (e.g., Mathematical packages are
supported)? The following are taken from [13] and are
provided as a guide for possible functions that may be
needed:

- Linear algebraic equations, matrix inversion.
- Eigenvalues and eigenvectors of matrices.
- Curve-fitting and data smoothing.
- Statistics.
- Function approximation methods.
- Function minimizations.
- Solving single non-linear equations.
- Solving systems of linear and non-linear equations.
- Interpolation.
- Numerical derivatives.
- Numerical quadrature.
- Ordinary differential equations.
- Partial differential equations.
- Higher functions.

I -83 )

0

............................................................... . -



COMP!,M WESIQN_

- Kalman filter.
- Digital signal processing.
- Transfer function analysis.

Navigation functions. .

Trigonometric functions.

RTS, Mathematical Functions/Documentation

1. Are the algorithms (with references) which are used for each
function documented?

2. Is the author of each of the packages given?

3. Does the documentation give the accuracy and efficiency and
upper or lower limits of allowed inputs and results? S

4. Does the documentation describe the handling of error
situations (e.g., incorrect user input parameters, etc.)?

RTS, Mathematical Functions/Efficiency

1. Have the supplied packages been verified for correctness and
efficiency? Are the efficiency results available?

2. What are the run times of the packages?
RTS, Mathematical Functions/Extendability

1. Are the packages written in Ada?

2. If written in assembler language, are there plans to
translate them to Ada?

RTS, Mathematical Functions/Interfaces

1. Are package interfaces clearly documented? -.
- Required input parameters?
- Interfaces with other modules?
- Any machine dependencies?

RTS, Mathematical Functions/Proprietary

1. Are there any proprietary or data rights restrictions on the
use or distribution of any of the supplied packages?

RTS, Mathematical Functions/Rehostability

1. Are there any machine dependencies such as bit, byte, word, _ S
etc., operations? Are these documented in both the code and
specifications?

RTS, Mathematical Functions/Resources Required

1. Is the size of each module given?

2. If the module requires secondary storage for its functions,
are the requirements given?

B-84

,' .. , ,- . .. > , , .' ., .. , - ., .. . . .... ., - , -. .. " , .- " , ,. , ."-".".'f. . .. .. ,i .- ." .



COMPLR QUSIN

RTS, Mathematical Functions/Test Availability

1. Are tests available to verify the accuracy and efficiency of
each module? Are instructions available which show the use
and interpretation of the results of the tests?

RTS" Mathematical Functions/Usability

I. Does the users' documentation explain the use of each package
and function?

- Are examples given?

- Are calling parameters (with explanations) given?

2. Is there any on-line assistance on the use of the package?

B..

K -,

'-S

0

B- 85•• "

-9 •"°

.......................... *.. .. . . .. . . .. . .



APPENDIX D

CONFIGURATION MANAGEMENT QUST1QNS

2arfiguration Managemnt Requirements

Configuration Manager/Availability

1. Are there configuration management tools? 0

Configuration Manager/Capacity

1. Are there any limits on the number of versions or variations
of an object?

2. On the total number of objects under configuration management
at once?

Configuration Manager/Configuration Management

1. Are the tools configuration managed? . .

Configuration Manager/Costs

1. What are the costs for leasing?

2. What are the costs for purchasing?

3. Do the tools depend on any other tools having separate costs?

Configuration Manager/Documentation

1. Is the documentation complete?

2. Is it on-line?

Configuration Manager/Extendability

1. What features of the design and implementation make the tools
extendable?

2. Are the tools applicable to any product of the software
development process, e.g., documentation, code, etc.?

Configuration Manager/Interfaces

B-86



ONFIGUATION MANAGEMENT QUETINS

1. Do all interfaces with other tools utilize the database?

2. Is the interface with the compiler or any other tool 0
mandatory?

Configuration Manager/Intraoperability

1. Are the configuration management tools integrated?

Configuration Manager/Maintainability 0

1. Are the design characteristics and documentation sufficient
for maintenance?

Configuration Manager/Efficiency

1. What is the time required to perform typical (TBD) 0
configuration management tasks?

2. What are the main memory and disk requirements?

Configuration Manager/Rehostability

1. What kernel interface do the CM tools assume? 0

2. Have the CM tools been rehosted?

Configuration Manager/Usability

1. Is the user prevented from making typical serious
configuration management errors?

2. Are the error messages understandable?

3. Are the commands and outputs consistent in terminology and
format?

4. Is there on-line help?

5. Is the tool an integral part of the environment, or must the
user invoke special tools to achieve configuration control?

6. What error messages are generated?

Configuration Manager/Proprietary

1. Is distribution of the CM tools restricted?

2. Can the government obtain and modify the source code?

Configuration Mianager/Granularity

1. Are the tools composable into more powerful tools?

Configuration Manager/Test Availability

1. Are there test scenarios for typical configuration management
tasks?

B-87

- . ._ _4 -. -.. : .. , . ...... o.... _........,. .. . . _ . .... .. ,. .



CONFIGURATION MAAEMN WETIN

Configuration Manager/Maturity
1. On what production system development have these tools been

used?

2. For how long? When?

3. Have the significant recommendations based on that use been
implemented?

4. Are any of these applications similar in scope and
requirements to the intended use?

Identi fication/Availability

1. Is there a distinct configuration identification tool?

Identification/Configuration Management

1. Is the tool configuration managed?

Identification/Cost - --

1. What are the costs for leasing? purchase?

2. Does the tool depend on any other tools having separate

costs?

Identi fication/Documentation

I. Is the documentation complete? Is it on-line?

Identi fication/Extendability

1. What features of the design and implementation make the tool "" "
extendable?

2. Is the tool applicable to any product of the software
development process?

Identification/Interfaces

1. Are all interfaces with other tools through the database?

Attribute Management/Availability

1. Can all objects and directories have attributes? (8] -

2. Can they be set, read, and used as retrieval criteria?

Attribute Management/Capacity

1. Is there any limit on the number of attributes for an object?
If so, what?

Attribute Management/Extendabi 1 ity

1. Can a user define a new attribute? (8]

B-"88



- . . --

CON IGURJAUON M1ANAEMENJ WESQTION

2. Can a user define automatic attribute maintenance?

Attribute Management/Interoperability -

1. Are the attributes common ones?

Attribute Management/Power

1. Are attributes inherited? 0

Version Management/Availability

I. Is an automatic version capability present? [8]

Version Management/Efficiency

1. Are revisions stored in toto or as a list of changes from a
base? [11)

Version Management/Power

1. Can the user over-write a version assignment? [8]

2. Is a current version supported? [8]

3. Are earlier versions available?

Variation Management/Availability

1. Is a variation capability present? 0

Variation Management/Power

I. Is it possible to apply a single variation specification to
all objects in an operation? [8]

2. Can the user specify a default variation? [8)

Relationship Management/Availability

1. Does the tool support relationships among database objects?

Relationship Management/Capacity

1. Is there any limit on the number of relationships that are

supported?

Relationship Management/Completeness

1. Can objects be retrieved on the basis of their relationships?

2. Is a relationship maintained in spite of name changes? [8]

Relationship Management/Extendability

1. Can the user define new relationships among objects?

Configuration Control/Availability

B-89



CONFIGURATION MAM QUESTION

1. Is there a distinct configuration control tool?

Configuration Control/Configuration Management

1. Is the tool configuration managed?

Configuration Control/Costs

1. What are the costs for leasing? purchase? " "

2. Does the tool depend on any other tools having separate
costs?

Configuration Control/Documentation

1. Is the documentation complete?

2. Is it on-line?

Configuration Control/Extendability

1. What features of the design and implementation make the tool
extendable?

2. Is the tool applicable to any product of the software
development process?

Configuration Control/Interfaces

1. Are all interfaces with other tools through the database? 0

Workspace Partitioning/Availability

1. Can the database be partitioned into multiple distinct - -
projects and protected from interference by unique naming and
access controls?

Workspace Partitioning/Interfaces

1. Is there a consistent interface between an individual
developer and the rest of the project? [8]

Access Control/Availability

1. What types of access rights are provided?

Access Contro i/Extendabi 1 ity

1. Can the types of access rights be extended? [8]

Access Control/Power 0

1. Can access be controlled at the directory as well as object
level? [8]

Access Control/Completeness

1. Can access be controlled on project, subproject, and
individual basis? [8]

B-90
.........-..'



CONFIGURATION MANAGEMENT QUTIONS

2. Can the user specify default access rights by team or
individual? [8]

3. Does the user have the ability to change access rights, or to
control who can change access rights? [8]

Baseline Management/Availability

1. Is there a mechanism for defining a baseline?

2. For controlling modifications to the baseline?

Baseline Management/Power

1. Can all components of a baseline be identified by a single
reference? [8]

Protection/Availability

1. Is there a configuration management database backup
capability?

Protection/Efficiency S

1. Are partial and incremental backups supported?

Protection/Robustness

1. Is deletion of an object prohibited as long as a derived
object exists?

Status Accounting and Reporting/Availability

1. Can the content and status of a baseline be determined
directly?

History Reporting/Availability

1. Can the history of an object be obtained directly?

History Reporting/Extendability

1. Can the user define the content of the history report?

Configuration Reporting/Availability

1. Is there a mechanism for reporting on the content and status
of a configuration baseline?

11-91

.S.,-



APPENDIX E

E&V TEAM REQUIREMENTS WORKING CROUP MMBESHI

Co-Chairpersons: Betsy Bailey Institute for Defense Analysis

Tim Lindquist Virginia Tech

Members: Greg Bettice Naval Avionics Ctr. S

Capt R. Contreras Kirtland AFB

Hubert Dorsett Kelly AFB

Rich Fleming Aerospace Corp.

Robert Fritz Computer Sciences Corp. .

Marlene Hazel Mitre Corp.

Ronnie Martin Georgia Tech

John Miller McClellan AFB

Mike Meirink Sperry Corp.

Amos Rohrer EG_&G

Helen Romanowsky Rockwell International S

Ray Sandborgh Sperry Corp.

13-92
S



0

APPENDIX C

DOD APSE ANALYSIS DOCUMENT

Version 1.0
28 September 1984

Prepared by

Evaluation & Validation Team

APSE Working Group

for the S

Ada Joint Program Office

*.1

C-' ..

K "
I.. -l

I. . ." ° .



TABLE OF CONTENTS

Seton number Description Page Number

1.0 Executive Summary C;-3
2.0 Introduction C-4
3.0 Scope C1
4.0 Identification of APSEsC-

50APSE Overview C-7
60Comparative Analysis of APSEs C-8

7.0 Evaluation Criteria and AnalysisC9

Appendices Description Page Number

A Descr iptions/Taxonomies C- 10
A..1 Ada Integrated Environment C-i I
A.2 Ada Language System C-27
A.3 Ada Language System/Navy G-38

B References C-39
C Definitions C-41
D Acronyms C-43
E APSEWG Members C-4 5

c-21



-1

1.0 EXECUTIVE SUMMARY

1.1 The overall Evaluation and Validation (E&V) Task objective is to
develop the technology for the evaluation and validation of APSEs. In
support of the E&V task, the APSE Working Group (APSEWG) (see Appendix 6
E for a list of APSEWG members) was formed to obtain expertise on DoD
developed APSEs, identify capabilities/tests/tools associated with
currently available software programming environments, and compare the -

capabilities with the DoD APSES. A DoD APSE is an Ada Programming
Support Environment that is/was developed using Government funding and
according to Government specifications. The DoD is currently
developing two Minimal Ada Programming Support Environments (MAPSEs)
the Ada Integrated Environment (AIE) and the Ada Language System
(ALS). A MAPSE is an APSE with the minimal features implemented to
support software development and maintenance. As a result, this
document was produced to identify existing programming support
environments for the Ada language and provide a taxonomy of the 6
capabilities of each environment. The environments identified and
described herein include the Air Force's Ada Integrated Environment
(AIE), the Army's Ada Language System (ALS), and the Navy's Ada
Language System/Navy (ALS/N). It is anticipated that future versions
of this document will include a comparison of the functional
capabilities of the identified environments, the evaluation criteria,

and an analysis of the application of the criteria to the existing DoD
APSEs. At this time, the document identifies areas for future
investigation and analysis.

* S

C-3

VS

-. . . . . ..



2.0 INTRODUCTION

2.1 The Ada Joint Program Office (AJPO) is sponsoring a tri-service
APSE E&V Team with the Air Force designated as the lead service. The
E&V Team has been tasked to develop a capability to perform assessment
of APSEs and to determine conformance to the Common APSE Interface Set
(CAIS) being developed by the KAPSE Interface Team/KAPSE Interface
Team Industry and Academia (KIT/KITIA). In order to accomplish the
E&V goal, several subtasks have been identified. Some include the - ' -

development of requirements for APSE E&V and the development of an
APSE E&V classification schema in which APSE components, interface
areas, and appropriate evaluation or validation criteria associated
with each APSE component will be identified. APSE components will be
identified and classified based upon the existence of criteria,
standards and metrics capabilities for each component. An APSE
evaluation capability, APSE validation capability, and procedures for
the implementation of E&V will be developed. The E&V team will 0
m.onitor the formal qualification testing of DoD APSEs and develop
evaluation and validation tools and aids.

2.2 As described in the STONEMAN document [1], the purpose of an APSE
is to support the development and maintenance of Ada applications
software throughout its life cycle with particular emphasis on 0
software for mission critical applications. STONEMAN notes that an
Ada programming support environment that provides the minimal
functional components necessary for the generation, compilation and
execution of Ada programs is called a minimal APSE or MAPSE. To date,
the DoD has undertaken the development of MAPSEs and this document
identifies and describes these MAPSEs. The features of the MAPSEs are 0
categorized according to the outline provided in "A Taxonomy of Tool
Features for the Ada Programming Support Environment (APSE)" [2].

2.3 Future versions of this document will include a comparative
analysis of the identified APSEs (section 6.0), evaluation criteria
for DoD APSEs developed with respect to these APSEs, and an analysis
of the application of the criteria to the APSEs (section 7.0). In
this version, these sections will include the areas and relevant
issues related to E&V which will guide this working group in the
comparison of the identified APSEs and development of evaluation
criteria for the components of the identified APSEs. They do not 0
include the only areas and issues to be addressed, but rather a
starting point for analysis. The E&V Requirements Document, developed
by the E&V Requirements Working Group (REQWG) will be used for further
determination of areas to be investigated.

C-

S

C-4

..... ', • . i ... .. ... . . . " . .. j . .. •,.,.d.. .- . . .- '."i ., '.-. .:. . .:,.. '<
-.. '...",j: -y, ,- ".... .. . .. ......-.. . '... ................



3.0 SCOPE

3.1 The purpose of the DoD APSE Analysis Document is to provide
descriptions and taxonomies of the features provided in Ada
programming support environments (APSEs) developed by the DoD. Future
versions of this document will address a combined taxonomy of the
APSES, evaluation criteria (in particular performance measurement
criteria), and a comparative analysis of the identified APSEs. Should
a new DoD developed APSE become available to this working group, its
description, taxonomy, and comparative analysis will be included in
subsequent versions of this document.

C-0

0

c-s

S

. .. • . . . . . .

. . . . . .. . . . . . . . .



4.0 IDENTIFICATION OF APSEs

4.1 In order to evaluate and validate an APSE, the first question that
arises is "What constitutes an APSE?". STONEMAN defines an APSE as an
integrated programming environment. The three principal features
include the data base, interfaces, and the toolset. According to
STONEMAN, the minimal toolset or MAPSE includes a text editor,
prettyprinter, translator(s), linker(s), loader(s), set-use static
analyser, control flow static analyser, dynamic analysis tool,
terminal interface routines, file administrator, command interpreter, -

and configuration manager. An analysis of existing programming 0

support systems (both DoD developed and commercially available) that
support the generation, compilation, and execution of Ada source
programs is on-going to determine the functional capabilities
available (or potentially available) that will require evaluation.
The DoD Ada Programming Support Environments that are under-going
analysis include the Ada Integrated Environment (IBM 4341/VM) the Ada S

Language System (VAX 11/780/VMS), and the Ada Language System/Navy
(VAX/VMS). The following section provides a brief overview of the
functional components in each of the systems available. A detailed
description may be found in Appendix A.

c-6"

S- -

S2 .[

•S{•--

• - . .

. . . . . . . . . . . . . . . . . . . . .



5.0 APSE OVERVIEW

5.1 The Ada Integrated Environment (AIE).

In April 1982, the Air Force (Rome Air Development Center) contracted
Intermetrics, Inc. to implement a Minimal Ada Programming Support
Environment (MAPSE) entitled "Ada Integrated Environment" (AIE). The
AIE is designed for use in the development of embedded computer system
software and can accommodate a variety of users, skilled and
unskilled, from project managers, program designers and developers to
documentors and clerical personnel. The AIE contains a virtual
operating system called the kernel or KAPSE (Kernel Ada Programming
Support Environment) that isolates tools (both system and user) from
hardware dependencies. The system tools consist of a production
quality Ada Compiler and symbolic debugger targetted to the IBM 4341;
a program integration facility with program library management and
linking/loading tools used to develop Ada programs; a data base
manager with a complete file management system; and a command language
processor which allows user interaction with tools and other operating
system routines. The AIE will be hosted on the IBM 4341 and can
co-exist with other operating systems (e.g., OS/VS1, CMS, UTS, etc.).

5.2 The Ada Language System (ALS)

In April, 1980, the Army contracted SofTech, Inc. to develop the Ada
Language System (ALS), an integrated programming environment designed
to aid in the development and maintenance of Ada programs. The ALS is
designed to support large software systems throughout their life
cycle. In particular, the ALS was designed with the requirements of
embedded computer system development in mind. The three major
components include a file structure (called the environment database),
a set of tools, and a mechanism through which the tools are invoked
(i.e., the command language interpreter).

5.3 Ada Language System/Navy (ALS/N)

The Ada Language System/Navy is a minimal Ada programming support
environment designed to provide support for program generation and
execution of Ada application programs targetted for Navy standard
embedded computers and peripherals. The environment described in S
Appendix A represents the first phase implementation of a full Ada
Programming Support Environment (APSE) for the Navy. The system is
composed of extensions to the Army' ALS that are the minimum required
to support projects using the Navy's standard embedded computers.

C-7

. . . . . . . . . . . . . . . . . . . .."- " '. " •.



6.o COMPARATIVE ANALYSIS OF APSEs

6.1 The APSEs identified and described above will be compared to
determining evalution criteria that may be incorporated in the E&V
approach. This section will include an analysis of the results of the
comparison. For example, in the development of this document, it
became apparent that the documentation for each of the environments
was radically different with respect to the level of detail in the B-5 ."'.

specifications, users manuals, etc. that was available. The
documentation for each environment will be analyzed more closely to --I

determine evaluation criteria specific to documentation practices,
procedures, etc. The issue of what constitutes "good" documentation
will be addressed. The issues of objectivity and subjectivity will be
investigated as potential hazards in determine the evaluation
criteria.

6.2 It is NOT the intention of this working group to proclaim any one
of the above-mentioned environments better or worse than any of the
others. Each of the environments is in a different stage of
development and was developed for a different purpose. Since at this
time, the AIE and ALS/N are in the design stage, it is impossible to
determine the size, speed, or implementability of these environments.
The ALS was released as a preliminary version for rehosting and
retargetting purposes and is by no means complete. Comparisons
between these environments are meaningless at this time. However,
this group intends to become familiar with the above environments in
order to determine their functional capabilities and to develop
potential evaluation criteria. 0

.-

.. .. .

• .% .% ".. '

• . ... " .% -



7.0 EVALUATION CRITERIA AND ANALYSIS

7.1 At a first glance, it can be seen that each of the above
environments has a similar set of functional characteristics and yet
the approach taken to implement these functions is different. As S
well, there are features in one environment that are missing in the
others. It is the intention of this working group to develop a
combined taxonomy which will incorporate all the existing features.
As well, software environments that do not support the compilation of
Ada source programs will be investigated for functional capabilities -
that may eventually be incorporated in an APSE. This section will S
describe the evaluation criteria identified in the above-mentioned
studies.

C-

-0

C--9

!0

..................................... . .......

. . . . . . . . . . . . . . . . . . . . . . . . .. . . .



APPENDIX A

A.1 ADA INTEGRATED ENVIRONMENT (AIE) DESCRIPTION 0

A.1.1 The overall structure of the AIE database is hierarchically .

relational and provides many primitives and operations for use in the
development of project configurations. The database contains a ..
collection of objects that have attributes and content. The
attributes of an object distinguish it from other objects in the
database. There are three classes of objects: simple, composite and
window. The content of a simple object is an Ada external file. The
content of a composite object is a collection of component objects
which may be simple, composite or window objects. The content of a
window object is a cross reference to a partition of another object in
the database. It is the mechanism through which access to and
responsibility for specific parts of the database is permitted.

A.1.1 The attributes of an object are the most important means of
partitioning and building the database. They describe the purpose,
content, and access of an object. In the AIE database, there are -
system and user defined attributes. The system defined attributes are
category, access control and history as defined in STONEMAN. There
are two kinds of user defined attributes, distinguishing and
non-distinguishing. The user defined distinguishing attributes are
the mechanism for the distinction between objects in the database.
They are later used to select various components from the composite S
object.

A.1.2 The MAPSE Ada compiler processes the full Ada language and is
designed to be rehostable and retargetable. It is divided into three
logically separate phases, the front end, the middle part, and the
back end. The front end is separated into two processing phases that
may be invoked separately. The first phase (LEXSYN) performs lexical
and syntactic analysis and generates an abstract syntax tree and name
table. To assist in the development of LEXSYN, two tools are used,
the lexer and parser generators which accept as input formal grammars
and output tables and skeleton recognizer programs that work from
these tables. The second phase performs semantic analysis, completes
the symbol table and generates an intermediate representation called
DIANA. One of the major differences of the Intermetrics DIANA from
the Tartan Laboratories DIANA (181 is that the class structure has
been changed so that classes form a strict hierarchy and lists of
nodes have been removed since they contain no additional information.
The DIANA for each Ada compilation unit is stored in the program
library when the front end accepts the source code as valid Ada text.
The middle part of the compiler implements generic instantiations and
determines if code sharing among instances is possible. It also adds
static information for the LIST and OPTIMIZE compiler options and
lowers the semantic level of the DIANA tree, making it more
machine-oriented, into the BILL tree. The back end phase transforms a
BILL tree into an equivalent linkable object module and performs
target machine independent optimizations such as constant propagation,

C- 10



redundant constraint check elimination, dead code elimination,
strength reduction, etc. as well as machine dependent optimizations
like peephole optimization and branch resolution (using shorter
relative branch instructions instead of full word branch
instructions).

r
A.1.3 Independent and modular program development is supported by the
Program Integration Facility, (PIF). PIF occurs in two phases,
compilation and program building. First, the Ada compiler processes a
single compilation unit in the context of other compilation units that
have been processed before. The compiler must access the program
library in order to obtain information about the compilation units
used by the current unit being processed. Upon successful
compilation, the compiler updates the program library with the
information gathered while compiling. The PIF provides functions to
allow the compiler to access the program library during the processing
of single compilation units. The second phase, performed by the
Program Builder, generates a complete executable program from the
separately compiled units placed in the program library. The Preamble
Generator is invoked to automatically generate an Ada parameterless
procedure whenever the main program specified by the user was a
function or a procedure with parameters. The Program Completeness
Checker verifies that all compilation units used are available in
object form and are consistent. The Body Generator may be invoked to
create a null subprogram, package or task body if the body of a
corresponding specification does not exist in the program library.
The Body Generator may be invoked directly by the user to create a
body skeleton. Finally, the Linker is invoked to create the
executable program by linking the main program and all referenced
object modules, resolving all external references. In addition, the
PIF provides other tools for the manipulation of program libraries.
The user may create, copy, display information about, or delete
program libraries. As well, the user may create, copy, examine, and
delete the contents of a program library. .2

A.1.4 The MAPSE Command Processor provides the interface between the
user and the MAPSE tools, giving the user a means of executing the
tools. It is an Ada program that interprets commands, written in MCL
(MAPSE Command Language), on a line by line basis. Commands may be
executed in the foreground or background; entered interactively or
stored as scripts for later execution; and may be interrupted and S
restarted by the user. The MCL uses Ada-like constructs whenever
possible and allows for user defined variables as well as predefined

* variables. Predefined status variables include EXECUTION TIME (the
execution time of the last foreground command), EXIT STATUS Tthe exit
status of the last completed foreground job commandT, ACTIVE TASKS (a
list of all currently executing tasks), etc. The complete -list is
included in the AIE taxonomy (see Appendix A).
A-1.5 The MAPSE Debugger (DBUG) is an Ada program that includes a
command processor that accepts as input commands from the Debug
Command Language, breakpoint command procedures, execution control
procedures, information command procedures, utility procedures, and
program library access procedures. The breakpoint command procedures

C-11 -
bS

............................................



provide the necessary facilities to create and maintain user defined
breakpoints. The functions provided within execution control
procedures include stopping at a breakpoint, executing any commands
(or command scripts) associated with the breakpoint, controlling a

r STEP function, and proceeding with the correct user program address.
The information command procedures provide the facilities for
displaying variables, program text, etc. The utility procedures
include functions and procedures for storing and communicating with
other programs (e.g., program integration tools). Access to the
symbol and statement tables, cross reference and linking information,
and source listings are provided through the program library access
procedures.

A.1.6 The MAPSE Text Editor is invoked as a standard Ada program. The
editor may be utilized in various modes depending upon the terminal
device and experience of the user. The command mode provides the
basic editing capabilities for the novice user, whereas the screen
mode is a superset of the command mode and provides CRT terminal
capabilities. Upon invoking the editor, the user is automatically put
into command mode and may invoke the more sophisticated features as
necessary during the edit session. Additional capabilities provided
include the ability to escape to the KAPSE (Operating System) level
and pass portions of the edited text as input to a user program. As e
well, the results of the program execution may be read into the edit
buffer (temporary workspace) in which editing can be resumed.

A.1.7 The AIE provides most of the toolset called out in the STONEMAN
document and is designed to be open-ended to enable the addition of
new tools. It is constructed and maintained with the use of the MAPSE
Generation and Support tool. This tool contains the bootstrap
facility, the parser and lexer generators, and the facilities required
to rehost the AIE. The Virtual Memory Methodology tool allows for the
creation and manipulation of abstract data structures without machine
dependencies.

C-i12U S %



A.l.8 AIE TAXONOMY

1.0 MANAGEMENT
1.1 Configuration Control 5

1.1.1 Attribute Functions
1.1.1.1 set an attribute
1.1.1.2 get an attribute
1.1.1 .3 get all attributes

1.1.2 Window Functions
1.1.2.1 create a window 0
1.1.2.2 delete a window
1.1.2.3 copy a window
1.1.2.4 rename a window
1.1.2.5 get window id
1.1.2.6 get next child window

1.2.7 get info on window S
1.1.2.8 revoke a window

1.1.3 Partition Functions
1.1.3.1 open partition
1.1.3.2 close partition
1.1.3.3 get next component in partition
1.1-3.4 list the partition 0

1. 1.4 Role Functions (Access Control)
1.1.4.1 create a role
1.1.4.2 delete a role
1.1.4.3 set role access
1.1.4.4 get role access
1.1.4.5 get all roles -
1.1.4.6 adopt a role
1.1.4.7 abandon a role
1.1.4.8 give a role

1.1.5 History and Archiving Functions
1.1.5.1 get history reference (current "state" of object)
1.1.5.2 create new source archive
1.1.5.3 recreate the contents and user attributes of

archived object
1.1.5.4 assign an object to existing source archive
1.1.5.5 get states from which the specified state is

directly derived
1.1.5.6 get source states from which the specified state

is directly or indirectly derived
1.1.5.7 get the history parameters
1.1.5.8 bring history script or archive on-line

1.1.5.9 check if history script or archive is already
on-line

1.1.5.10 get history time/date
1.1.5.11 get user name associated with specified script or

source state
1.1.5.12 get (name of) most recent revision

1.1.6 Access synchronization
1.1.6.1 reserve an object
1.1.6.2 release an object
1.1.6.3 abort the reservation of an object

C-13

. . . J . 2 L . -t . -. - L ._ " . ' _' . ,- " ." ". ," - - -" . . . " . . " ' " ," . '. '. .- .- .- . *.'c- i'. 3' '



1.1.6.4 determine the user who performed reservation
1.2 Information Management

1.2.1 Aia Library Management (Program Library Tools)
1.2.1.1 Program Library Manager

1.2.1.1.1 Collection Functions S
1.2.1.1.1.1 create a collection
1.2.1.1.1.2 delete a collection
1.2.1.1.1.3 link collections
1.2.1.1.1.4 unlink collections
1.2.1.1.1.5 add rules for collections

1.2.1.1.1.6 delete rules for collections 0
1.2.1.1.1.7 modify rules for collections
1.2.1.1.1.8 add approved operations of a collection
1.2.1.1.1.9 delete approved operations of a

collection
1.2.1.1.1.10 modify approved operations of a

collection
1.2.1.1.1.11 display segment number information of a

collection
1.2.1.1.1.12 display objects within collection
1.2.1.1.1.13 display resource catalog information

(name, prefix set, version/revision, etc)
1.2.1.1.2 Catalog Functions

1.2.1.1.2.1 create a catalog
1.2.1.1.2.2 delete a catalog

1.2.1.1.2.3 promote a catalog
1.2.1.1.2.4 derive a catalog
1.2.1.1.2.5 copy a catalog
1.2.1.1.2.6 create unit-name prefix set for a catalog

1.2.1.1.2.7 update unit-name prefix set for a catalog
1.2.1.1.2.8 link to a resource catalog
1.2.1.1.2.9 unlink from a resource catalog
1.2.1.1.2.10 update catalog links
1.2.1.1.2.11 display type of the catalog (primary or

resource, interface/implementation)
1.2.1.1.2.12 display the prefix set of a catalog
1.2.1.1.2.13 display resource catalogs referenced

within the catalog

1.2.1.1.2.14 display all objects within the catalog
1.2.1.1.3 Library Unit Functions

1.2.1.1.3.1 delete a library unit
1.2.1.1.3.2 save a library unit
1.2.1.1.3.3 bring a library unit up-to-date

1.2.1.1.3.4 display library unit's precursor list

1.2.1.1.3.5 display library unit's requirements list

1.2.1.1.3.6 display whether the library unit is
up-to-date

1.2.1.1.3.7 display the date the library unit was
created

1.2.1.1.3.8 display the size of the library unit
1.2.1.2 Link map/X-ref Lister
1.2.1.3 Unit Lister
1.2.1.4 Help Installer

1.2.2 Specification Management

C-14

i~~~~~~~.?..-......................................................... •--. ................... ... ............



no provision
1.2.3 Data Dictionary Management

no provision
1.2.4 Ada Package Management

no provision
1.2.5 Test Management 0

no provision
1.3 Project Management

1.3.1 Cost Estimation
1.3.2 Scheduling
1.3.3 Tracking

1.4 System Management
1.4.1 Backup and Recovery

1.4.1.1 Full Backup
1.4.1.2 Incremental Backup
1.4.1.3 Recovery of objects

1.4.2 Terminal I/O
1.4.2.1 read from specified terminal
1.4.2.2 write to specified terminal
1.4.2.3 set terminal characteristics
1.4.2.4 get terminal characteristics

1.4.3 Device I/O
1.4.3.1 open device
1.4.3.2 read device 0
1.4.3.3 write device
1.4.3.4 close device
1.4.3.5 get information on device
1.4.3.6 set information about device

1.4.4 Interactive I/O
1.4.4.1 set cursor & echoing of input at current line &

col of output
1.4.4.2 break any echoing association
1.4.4.3 get output information (e.g., terminal's height

& width)
1.4.4.4 set output information
1.4.4.5 get input information (e.g., keyboard control

characters)
1.4.4.6 set input information

1.4.5 Multiple Program Management
1.4.5.1 Program Loading

1.4.5.1.1 load program
1.4.5.1.2 unload program

1.4.5.1.3 allocate storage
1.4.5.1.4 free storage

1.4.5.2 KAPSE Program Communication
1,4.5.2.1 KAPSE Call - signal that a message should

be sent across KAPSE protection boundary.
KAPSE receives request and returns results.

1 4.5.3 Program Invocation
1.4.5.3.1 invoke executable program context/CL script
1.4.5.3.2 search for executable program context or

CL script
1.4.5.3.3 invoke program but caller is not suspended

until completion

C-15
c-i

L " . , '. " A - '" % . - . .' . - ." . ' ' _. t ' . _- ' . . ' . ' ' - . .' - ' ' ' '- ' - '- '- - " -' -' ' -



1.4.5.3.4 wait for completion of specified program
context

1.4.5.3.5 exit a program
1.4,5.3.6 suspend a program
1.4.5.3.7 resume execution of a program 0
1.4.5.3.8 extract a parameter from a parameter string
1.4.5.3.9 invoke a specified operation

1.4.5.4 Inter-Program Communication
1.4.5.4.1 accept next entry call for specified channel
1.4.5.4.2 end rendezvous and provide results
1.4.5.4.3 send parameters to designated context via

channel
1.4.6 Virtual Memory Methodology

1.4.6.1 Rep Analyzer - operations generated:
1.4.6.1.1 operations on virtual record types

1.4.6.1.1.1 set root locator value for a VMSD
1.4.6.1.1.2 obtain root locator value for a VMSD
1.4.6.1.1.3 iterate over all virtual records within

a VMSD
1.4.6.1.1.4 output a sequence of domains in virtual

record notation
1.4.6.1.1.5 output a sequence of VMSDs in virtual

record notation
1.4.5.1.1.6 output single virtual record in virtual

record notation
1.4.6.1.1.6 read virtual record notation into one

or more domains
1.4.6.1.2 operations on vectors

1.4.6.1 .2.1 create a vector
1.4.6.1.2.2 access an element of a vector
1.4.6.1.2.3 set a value of a vector
1.4.6.1 .2.4 obtain a value of a vector
1.4.b.1 .2.5 obtain the size of a vector
1.4.6.1.2.6 delete a vector

1.4.6.1.3 operations on lists
1.4.6.1.3.1 create a list
1.4.6.1.3.2 create a cell
1.4.6. 1.3.3 access a cell
1.4.6. 1.3.4 obtain a value of a cell
1.4.6.1.3.5 set a value of a cell 0
1.4.6.1.3.6 locate the next or previous cell
1.4.6. 1.3.7 insert a cell
1.4.7. 1.3.8 remove a cell
1.4.6.1.3.9 append one list to another
1.4.6.1.3.10 delete a list

1.4.6.1.4 operations on sets 0
1.4.5.1.4.1 create a set
1.4.6.1.4.2 .dd members to set
1.4.6.1.4.3 find the value of a member
1.4.6.1.4.4 find specified values
1.4.6.1.4.5 copy sets
1.4.6.1.4.6 find the next member in a set 0
1.4.6.1.4.7 the size of a set
1.4.6.1.4.8 determine intersection of sets

C-16

S

. . . . . . . .. . . . . . . . .'



1.4.6.1.4.9 determine union of sets
1.4.6.1.4.10 determine difference of sets
1.4.6.1.4.11 determine symmetric difference of sets
1.4.6.1.4.12 delete a set

1.4.6.1.5 operations on text strings
1.4.6.1.5.1 create a string

1.4.6.1.5.2 delete a string
1.4.6.1.5.3 access text value

1.4.6.2 VMM Basic Operations
1.4.6.2.1 open a domain
1.4.6.2.2 close a domain
1.4.6.2.3 create a subdomain (VMSD)
1.4.6.2.4 access a subdomain (VMSD)
1.4.6.2.5 close a subdomain (VMSD)
1.4.6.2.6 create a node
1.4.6.2.7 reference a node
1.4.6.2.8 change a node kind
1.4.6.2.9 get root node of a subdomain
1.4.6.2.10 set root node of a subdomain

2.0 STATIC ANALYSIS
2.1 Type Analysis . .

2.1.1 Compiler Front-end - syntax and semantic analysis S
2.2 Interface Analysis

2.2.1 Compiler - specification/body matching
2.3 Statistical Profiling

no provision
2.4 Cross Reference

2.4.1 PIF Lister - cross reference listing (see above) S
2.5 Auditing

no provision
2.5 Complexity Measurement

no provision
2.7 Completeness Checking

no provision
2.8 Consistency Checking

no provision
2.9 Structure Testing

no provision
2.10 Reference Analysis

no provision 0

3.0 DYNAMIC ANALYSIS
3.1 Timing Analysis

no provision
3.2 Tuning Analysis

no provision
3.3 Tracing/Debugging

3.3.1 Debugging Capabilities
3.3.1.1 Breakpoint commands

3.3.1.1.1 set breakpoint
P 3.3.1.1.1.1 break after specified statements/labels

3.3.1.1.1.2 break before specified statements or
labels

C 17 ........ ... .. -



3.3.1.1.1.3 break before each statement that
modified the specified variables

3.3.1.1.1.4 break on raise of specified exceptions
3.3.1.1.1.5 break on raise of all exceptions
3.3.1.1.1.6 break on unhandled exceptions S
3.3.1.1.1.7 break on entry to all subprograms and

entries
3.3.1.1.1.8 break on exit from all subprograms

and entries
3.3.1.1.2 remove breakpoints
3.3.1.1.3 suspend breakpoints 0
3,3.1.1.4 restore breakpoints (only those suspended)

3.3.1.2 Execution Control
3.3.1.2.1 start execution of a program
3.3.1.2.1.1 proceed from the specified label or

statement
3.3.1.2.1.2 return from subprogram 0
3.3.1.2.1.3 continue the user program from where

it was suspended
3.3.1.2.1.4 ignore breakpoint the next specified

times
3.3.1.2.1.5 invoke a user program which must be in

the load module
3.3.1.2.1.6 raise the specified exception and proceed

3.3.1.2.2 stop execution of a program
3.3.1.2.3 modify execution of a program

3.3.1.2.3.1 delay a task for specified time period
(seconds)

3.3.1.2.3.2 abort the specified task
3.3.1.2.3.3 change the priority of a task

3.3.1.3 Information commands
3.3.1.3.1 display values of specified variables
3.3.1.3.2 display values of all variables in scope
3.3.1.3.3 display status of tasks at specified levels

starting at current block with any or all -
of the following options:

3.3.1.3.3.1 tasks currently activated
3.3.1.3.3.2 tasks that are running
3.3.1.3.3.3 all tasks waiting at any call point

(or at a call point for a particular
entry)

3.3.1.3.3.4 all tasks waiting at any accept point
or (for a particular entry call)

3.3.1.3.3.5 tasks that are waiting because of a
program delay

3.3.1.3.3.6 tasks which are dependent on the
current block

3.3.1.3.3.7 tasks which are blocked and why
3.3.1.3.4 display any or all breakpoints
3.3.1.3.5 display specified lines ,f source code
3.3.1.3.6 display command and script associated with

specified breakpoint id
3.3.1.4 DBUG control

3.3.1.4.1 initiate DBUG processing

c-18

................. .. .-. :.........,...:.......- -.. .",.'' ''_. ._...f''..'. ; -- - ,' - -'- ' ' ',' ' "-" ' "... . ... .... . _ S . '



3.3.1.4.1.1 set trace option on (default) or off
(options are chain, flow, task and all)

3.3.1.4.1.2 set default base for output of variables
3.3.1.4.1.3 verbose (on or off, default is on) prompt

3.3.114.2 suspend DBUG processing
3.3.1.4.3 read in command files
3.31.4.4 redirect output
3.3.1.4.4.1 append a copy of breakpoints and display

information to a file
3.3.1.4.4.2 save current breakpoints in file
3.3.1.4.5 change scope to caller of current scope
3.3.1.4.6 change scope to static enclosing scope 0
3.3.1.4.7 reset scope to original breakpoint scope
3.3.1.4.8 invoke command processor
3.3.1.4.9 invoke editor on the commands associated with

specified id
3.3.1.4.10 execute file as a stream of DBUG commands
3.3.1.4.11 stop user program from execution and return

control to DBUG
3.4 Regression Testing

no provision
3.5 Assertion Checking

no provision
3.6 Coverage Analysis ]

no provision

4.9 TRANSFORMATION

4.1 Formatting
4.1.1 Source Reconstructor

4.1.1.1 reconstruct source from DIANA or AST verbatim S
4.1.1.1.1 user specifies indentation (default is one

tab per level)
4.1.1.1.2 user specifies commenting indentation

(default is one tab to right of current
indentation column)

4.1.1.2 reconstruct source from DIANA or AST according 0
to Ada LRM conventions

4.2 Optimization
4.2.1 Optimization Level
4.2.1.1 Time - perform all optimizations
4.2.1.2 Space - perform all passes, but eliminate

strength reduction -
4.2.1.3 None - perform no optimizations

4.2.2 Optimizations Performed
4.2.2.1 constant propagation
4.2.2.2 redundant constraint check elimination
4.2.2.3 constant folding
4.2.2.4 elimination of unreachable code
4.2.2.5 code motion - movement of loop invariant code

out of loops
4.2.2.6 redundant computation elimination
4.2.2.7 strength reduction - reducing multiplications

within loops to additions
4.2.2.8 algebraic simplifications of expressions and O

C-19

':... '.. ".. "... ......". ." " , ." " ' ' ."..".. ". "".....* .. .. . . . -'



statements
4.2.2.9 peephole optimization

4.3 Compilation
4.3.1 Compiler Options

4.3.1.1 LIST => 0
4.3.1.1.1 enable/disable a listing (default is disable)
4.3.1.1.2 generate/suppress text listing (default is

list)
4.3.1.1.3 generate/suppress listing of symbol table . -

attributes of identifiers (default is
suppress listing)

4.3.1.1.4 generate/suppress cross reference listing
of all identifiers (default is suppress
listing)

4.3.1.1.5 generate/suppress assembly code listing
(default is suppress listing)

4.3.1.2 LISTERRS => n
print errors above severity n in listing
(default is 0)

4.3.1.3 TTYERS => n
print errors above severity n on terminal
(default is 0)

4.3.1.4 NOSEM => n 0

if syntax errors >: n occur, suppress the rest
of the phases (default is 50)

4.3.1.5 NOCODE => n
if semantic errors >= n occur, suppress the
rest of the phases (default is 50)

4.3.1.6 DEBUG :>
4.3.1.6.1 allow/disallow DBUG to alter and inspect

information
4.3.1.6.2 insert/suppress insertion of DBUG hooks

after each statement and at the beginning
and end of each procedure

4.3.1.7 OPTIMIZE :> 0
4.3.1.7.1 for space
4.3.1.7.2 for time

4.3.1.7.3 no optimizations are performed
4.3.1.8 STATISTICS =>

collect statistics (types are TBD)
4.3.1.9 COMMENT =>

preserve/remove comments in the DIANA (default
is to remove)

4.3.1.10 REORDER =>
allow/disallow the compiler to reorder
compilation units (default is to disallow)

4.3.1.11 SPACE =>n
allow compiler n kilobytes space (default: 512)

4.3.1.12 LOOKAHEAD :> n
n is the number of tokens to lookahead in
parsing (default is 5)

4.3,1.13 TRACE =>
used by compiler developers and maintenance only

4.3.2 Functional Components

C- 20

. . . ,. .



4.3.2.1 Driver call Front, Middle and Back End in order -
or separately

- 4.3.2.2 Front End
4.3.2.2.1 Lexsyn Phase performs lexical and syntactic

analysis _

4.3.2.2.2 Sem Phase - performs semantic analysis S
4.3.2.3 Middle Part

4.3.2.3.1 Geninst Phase - performs generic instantiation
4.32.3.2 Statinfo Phase - constructs the call graph and

symbol cross references
4.3.2.3.3 Storage Phase - determines the run-time - ' 

-

representation for data and the principal S
storage requirements

4.3.2.3.4 Expand Phase - carries out a major tree
rewrite that removes the implicit Ada
semantics and exposes address arithmetic

4.3.2.4 Back End
4.3.2.4.1 Flow Phase - performs machine independent B

optimizations
4.3.2.4.2 Vcode Phase - performs a tree walk

simulating code generation and determines
the register requirement

4.3.2.4.3 Tnbind Phase - determines location of every
object the code generator will deal with

4.3.2.4.4 Codegen Phase - uses machine-specific
templates to generate a linked list of
locally optimal target machine instructions

4.3.2.4.5 Final phase - performs machine dependent
"peephole" optimizations, branch resolution
and cross jumping _

4.3.3 Program Builder
4.33. i Builder

4.3.3.1.1 parameters:
4.3.1.1.1 lib_update - specify whether units that

are not up-to-date should be brought up to
date (default is on)

4.3.1.1.2 unit gen - specify whether missing
bodies should be generated and compiled
(default is on)

4.3.1.1.3 csect elim - specify whether the linker
should eliminate unreferenced esects from
its output (default is on)

4.3.1.1.14 xref - specify whether xref information
should be generated for the link map/xref
lister (default is off)

4.3.3.1.2 check program completeness and consistency
(call program completeness checker)

4.3.3.1.3 traditional linking function
4.3.3.2 Preamble Generator

4.3.3.2.1 determine the need for a preamble
4.3.3.2.2 generate the preample (if necessary)

" 4.3.3.3 Program Completeness Checker
4.3.3.3.1 verifies completeness

4.3.3.3.2 creates a minimal body for unit if necessary

C- 21

-. . , , - , . ' .. . . -. .. . . . -. . . . , .. , . .. . . > .> . . . , - , .. . . . . . .. . .- , . . .- .. - . .. , . . . - . . .. . -. , ., -. . .. ., .. - - -, . . . - { ; 1 . ' ; , ,



4.3.3.3.3 update object module if necessary
4.3.3.4 Body Generator

4.4 Editing
4.4.1 Syntax Directed

no provision
4.4.2 Basic Editor

4.4-.2.1 line command mode functions
4.4.2.1.1 display functions

4.4.2.1.1.1 display current line
4.4.2.1.1.2 display current line number
4.4.2.1.1.3 display specified line(s) - .
4.4.2.1.1.4 display specified line(s) with line

numbers
4.4.2.1.1,P5 display line(s) with + or - offset
4.4.2.1.1.6 display current file name and number of

lines in file
4.z!.2.1.2 mark lines
4.4.2.1.3 text manipulation

4.4.2.1.3.1 copy specified lines
4.4.2.1.3.2 replace specified lines with text input
4.4.2.1.3.3 substitute specified string with

specified string
4.4.2.1.3.4 delete specified lines
4.4.2.1.3.5 globally search for patterns
4.4.2.1.3.6 insert/append text
4.4.2.1.3.7 join text from specified range of lines

to one line
4.4.2.1.3.8 move text to another part of buffer
4.4.2.1.3.9 delete text and place in temporary

buffer
4.4.2.1.3.10 insert text from temporary buffer into

specified lines
4.4.2.1.4 read from a file
4.4.2.1.5 write to a file (all or part of edit buffer)
4.4.2.1.6 write specified lines as input to specified

MCP command
4.4.2.1.7 undo the changes made from the last editing

command
4.4.2.1.8 quit

4.4.2.2 full screen mode
4.4.2.2.1 all line oriented commands

4.4.2.2.3 scroll up/scroll down
4.4.2.2.4 move forward/backward a page

4.4.2.2.5 searching functions
4.4.2.2.5.2 search for specified string and position

cursor at first occurrence moving forward
or backward in buffer

4.4.2.2.5.3 go to next line with an occurrence of a
previously mentioned string

4.4.2.2.5.4 go to beginning of file
4.4.2.2.5.5 go to end of file
4.4.2.2.5.6 go to specified line

4.4.2.2.6 moving around the screen S
4.42.2.6.1 advance to next line

C- 22. ~~-9'-'>.>



0
4.4.2.2.6.2 advance to previous line
4.4.2.2.6.3 move to top line (home)
4.4.2.2.6.4 move to middle of the screen
4.4.2.2.6.5 move to last line of screen
4.4.2.2.6.6 move to next line maintaining column

position 0
4.4.2.2.6.6 move to previous line maintaining column

position
4.4.2.2.6.7 move to next word
4.4.2.2.6.8 move back one word
4.4.2.2.6.9 advance to end of current word
4.4.2.2.6.10 move right one character
4.4.2.2.6.11 move left one character
4.4.2.2.6.12 move forward/backward one sentence
4.4.2.2.6.13 move forward/backward one paragraph

4.4.2.2.3 open new lines before/after the current line
4.4.2.2.4 delete character under the cursor
4.4.2.2.5 replace character under cursor position with 0

next character typed
4.4.2.2.6 substitute characters for the character under

the cursor
4.4.2.2.7 clear screen
4.4.2.2.8 erase to end of line
4.4.2.2.9 hardware character and line insert/delete 0

4.4.2.3 KAPSE or user program invocation
4.4.2.3.1 escape to KAPSE level - or user level
4.4.2.3.2 pass portions of edited object to program as

input
4.4.2.3.3 output of invoked program may be read into

edit buffer
4.4.2.4 user controlled options

4.4.2.4.1 specify length of tabstops
4.4.2.4.2 specify automatic wraparound of text to next

line (default)
4.4.2.4.3 specify automatic indentation (default is no

indentation)
4.4.2.4.4 specify pattern searches are wrapped around

end of file (default)
4.4.2.4.5 specify command mode is prompted (default)
4.4.2.4.6 print all output lines with line numbers

(default is no line numbers)
4.4.2.4.7 specify Ada - changes definition of word

(full screen mode) to be Ada lexical unit,
paragraph is to be delimited by matching
pairs of reserved words (begin-end,loop-end
loop, if-end if, etc) (default is no Ada)

4.4.2.5 edit scripts - use of "canned" edit commands out

of a file

5.0 USER OUTPUT
5.1 Diagnostics

5.1.1 Ada Compilation Errors
5.1.1.1 syntax error reporting (severity/description)
5.1.1.2 pre-semantic error reporting (severity/description) ..

C-23



5.1.1.3 semantic error reporting (severity/description)
5.1.1.4 storage error reporting (severity/description)

5.1.2 Error reporting through MAPSE Command Processor
5.2 Listings

5.2.1 Ada source text listing 6
5.2.2 assembly language listing
5.2.3 cross reference listing of identifiers
5.2.4 symbol table listing

5.-3 Text
5.4 Tables
5.5 Graphics 0
5.6 On-Line Assistance

5.6.1 Command Assistance
5.6.1.1 help feature in MAPSE Command Processor

5.6.1.1.1 help with no parameters - general help
description

5.6.1.1.2 help with parameters - description of
specific AIE feature

5.6.2 Error Assistance
5.6.3 On-Line Tutor
5.6.4 Definition Assistance
5.6.5 Menu Assistance 0 -.

6.0 MACHINE OUTPUT
6.1 Object Code

6.1.1 IBM 4341 Object Code generation

7.0 SUBJECT INPUT
7.1 Text Input
7.2 Data Input
7.3 Code Input

7.3.1 Ada Code Input
7.4 VHLL Input

7.4.1 Specifications

8.0 CONTROL INPUT
8.1 Parameters
8.2 Commands

8.2.1 external program invocation
8.2.1.1 function, procedure call, script invocation

8.2.1.1.1 control commands
8.2.1.1.1.1 stop execution of program

8.2.1.1.1.2 start execution of program
8.2.1.1.1.3 cancel execution of program
8.2.1.1.1.4 determine status of executing program

8.2.1.1.2 context object attributes
8.2.1.1.2.1 terminated - indicates whether execution

is completed
8.2.1.1.2.2 execution time - total execution time
8.2.1.1.2.3 exit status - "ok", "cancelled",

"interrupted"
8.2.2 expression manipulation

8.2.2.1 assignment (:=)
8.2.2.2 get - read an arbitrary sequence of literals

C-24

%... .. . .. .. ... .



8.2.2.3 put - print the values of an arbitrary sequence
of expressions

8.2.3 database manipulation
8.2.3.1 Simple Objects

8.2.3.1.1 copy a file/simple object 0

8.2.3.1.2 delete a file/simple object
8.2.3.1.3 rename a file/simple object
8.2.3.1.4 create a file/simple object
8.2.3.1.5 open a file/simple object
8.2.3.1.6 close a file/simple object
8.2.3.1.7 write a file/simple object
8.2.3.1.8 read a file/simple object

8.2.3.2 Categories
8.2.3.2.1 create category template object
8.2.3.2.2 define an attribute to reside within an

extended object
8.2.3.2.3 specify that an attribute will be constant S

8.2.3.2.4 determine if an attribute is a constant
8.2.4 control commands

8.2.4.1 if - select for execution one or none of a
sequence of commands

8.2.4.2 loop - sequence of commands executed zero or
more times

8.2.5 termination
8.2.5.1 return - return control to MCP invoker
8.2.5.2 logout
8.2.5.3 suspend - terminate MCP processing, but maintain

current context
8.2.6 shutdown commands - the user may specify a sequence 0

of commands that are to be performed when a logout
or return is encountered.

8.2.7 resume (a previously suspended MCP session)
8.2.8 I/O redirection

8.2.8.1 -1 - redirects a command's standard input
8.2.8.2 -> - redirects a command's standard output
8.2.8.3 -1 - between two commands indicates that the

commands are to be connected via a pipe
8.2.9 background execution of commands
9.2.10 compound commands - block structure (begin .. end)
8.2.11 MCP variables

8.2.11.1 variable attributes (type, integer, real, string, 0

boolean, array, record, length)
8.2.12 predefined variables

8.2.12.1 %ENVIRONMENT - control MCP options
8.2.12.1.1 components:
8.2.12.1.1.1 prompt - defines the MCP user prompt

8.2.12.1.1.2 inform default out - user informed of 0
each difault OUT parameter (initial
value is false)

8.2.12.1.1.3 auto redefine - default OUT parameter
replices an already existing variable
with same name (initial value is false)

8.2.12.2 %STATUS - placeholders for values generated
during command processing

C-25

..-.. I..................



8.2.12.2.1 components:
8.2.12.2.1.1 fcontexts - contains names of all

context objects within last foreground
command

8.2.12.2.1.2 execution time - contains execution
time of last completed foreground command

8.2.12.2.1.3 exit status - contains the exit status
of last completed foreground command

8.2.12.2.1.4 last task - contains the name of the
last-background task

8.2.12.2.1.5 active tasks - contains a list of all
currently executing tasks

8.2.13 exec - takes a string parameter and executes it as an
MCP command

8.2.14 renames command
8.2.15 nested MCP's

r 8.2.16 login
8.3 Command Procedures

8.3.1 scripts - sequence of MCP commands stored in a
database object

8.3.1.1 parameters - both in an out
8.4 Pipes

8.4.1 - - between two commands indicates that the commands
are to be connected via a pipe

C2

*0b

C-26

. . . ~~. . . .~ . " ." . " - . - " " - - " " . . . i . " i"

,.".. L... 1.. ..... ... .-1 .--. ' . . * " . * . • .. , . . . = .... -=-......... . . ... .



A.2 ADA LANGUAGE SYSTEM (ALS) DESCRIPTION

A.2.1 The ALS environment database stores all information relevant to
a software project and is a self-contained entity independent of the
host file system. Information to be stored includes Ada and Assembly
language source text, machine code representations of programs, test
data, log files, statistics, documentation and relationships among . -

programs and compilation units. The information is accessed through
the ALS Database Manager.

A.2.1.1 The database is organized as a directed acyclic graph (DAG).
Objects in the database, called nodes, have properties called
attributes and associations. Attributes are named properties with
character string values that enable the database to contain character
string information about a node. Associations are named properties
with values that are collections of pointers to other nodes that
enable the database to contain arbitrary networks of relationships
among nodes. There are three basic types of nodes, files,
directories, and variation headers. Directories and variation headers
are nodes in the DAG and files are leaves within the structure. File
nodes contain a data portion that may be read and written by Ada
programs through the Ada I/O packages (INPUT OUTPUT and TEXT 10
packages). Directory nodes name and group otheF nodes. When a node
is created, it is created "within" a directory called the parent
directory. Every node except the root has exactly one parent
directory and contains information identifying the directory that is
its parent. As well, each directory contains a specification of the
nodes grouped in it. 0

A.2.1.2 The tracking of changes is supported through the use of file
revisions. These revisions are a linearly ordered set of numbered
files. Upon creation of a file, the revision number one is
automatically assigned. The only way to create a new revision is to
use the "revise" tool. Only the most recent revision may be modified S
(i.e., earlier revisions may only be read and executed).

A.2.1.3 The environment database supports the collection of related
objects that are equal alternatives and do not supersede one another
(e.g., the collection of bodies that may implement the same Ada
package specification). These collections, called variation sets, are 0
unordered sets of named nodes with a header node called the variation
set header. The header node is the parent of each variation in the
set. Directories may contain variation sets as offspring and
variation sets may contain directories as offspring.

A.2.1.4 Program libraries contain the information necessary to support
separate compilation, perform partial and complete link-edits of Ada
programs, and incorporate subroutines written in languages other than
Ada. As well, program structure is specified to support analysis and
debugging requirements. Files within a program library are called
containers and include specification of externally visible Ada names,
statistics, object code, etc. Assemblers, linkers and importers each
create a single container. When a unit is recompiled, a new revision

C- 27I
:, : i~ >:'.> ."--":. : -> ."i-.:": '--'2<2 2:..22': :-".' .: '..' -'•'--? "''"-'i.' -..'-',. ..", .. . .: ..., ' ..



of its container is created (the old container is not replaced by the
new). A full history of successful compilations is maintained in each
program library.

A.2.1.5 Access control within the ALS database is handled through 0
attributes and user names (e.g., team.member). Every node has a set
of attributes specifying the access controls. Initially, when a node
is created, any member of the creator's team may read and execute the
contents of the node. Access control attributes may then be set using . -

the "chattr" tool.

A.2.2 The Ada compiler is divided into two major phases, the machine

independent section (MI) and the code generator targetted to the VAX
11/780(VMS). The machine independent portions include compiler
control, Ada language program analysis (front end), machine
independent optimizations, utility support, and tracing support. The
control function includes receiving the user's invocation, managing
the flow of control through the compilation, generating listings,
saving results and terminating the compilation when encountering a
fatal error. The machine independent optimizations performed include
redundant constraint check elimination, constant expression
evaluation, common subexpression elimination, code motion, dead code
elimination, etc. Within the utility support, statistics are gathered
about each compilation which may be printed out later. These
statistics include the number of compilation units, the number of
lexical units of each type, the number of source input records, and
optimization statistics. The output of the MI section is the DIANA
intermediate language which is a modified version of the Tartan
Laboratories DIANA and different still from the Intermetrics DIANA. 0
The code generator portion of the Ada compiler includes two phases,
translation and selection. Translation is the mapping of a user
program, which is in terms of Ada objects, operators and control
functions, into an equivalent set of machine-level data objects,
operators and control functions (i.e., replacing generics, in-line
functions and declarations with explicit code which is still in the
DIANA form and target independent). Selection is the process of
determining the sequences of VAX 11/780 instructions that correctly
implement the user program.

A.2.3 The ALS Linker consists of two parts, a linking tool and an
exporter. The linking tool combines separately created containers
which may be Ada programs compiled on the ALS Ada compiler, assembly
language programs assembled on the VAX 11/780 assembler, or previously
linked modules. The exporter is the tool which makes a linked program
into a VAX 11/780 load module.

A.2.4 The File Administrator and Configuration Control Tools are two
features of the ALS which provide operating system level support. The
File Administrator is a collection of tools providing services for
comparing elements in the database, balancing disk and space
requirements, backup and recovery of the ALS upon system failure or
human error, long term storage, and ALS-to-ALS database transmission.
The Configuration Control Tools include functions to manipulate the
program library (create, delete, interrogate, etc.).

C- 28
0

~~~~~~~~.. ..... ... '....... ...-..........-....................... ..................-....--.... '.. ' - - _ . _,. ... ....

i . .,-,..,.,.,.....,-...--,...-....°..............................

I

A.2.5 The command language (CL), called an ALS session, provides a
single and uniform interface between the user and tools. The CL is
interpreted by the command language processor (CLP) which is used to
invoke other tools as well as instances of itself. A session is
divided into a series of command streams which begin when the user 6

logs on the ALS (from VMS) and each time a command procedure is
invoked. A command stream ends when the user logs off the ALS and

* each time a command procedure ends. A command procedure is a sequence
of commands (terminated with a line mark or semicolon) stored in the
database.

c

6

LS

"S

• S

0

". _S

0-

' - J *" " ' ' " " - -- '.1 . I L " "'" ""

t, . :_ .' . '. " •.

ADl!-A153 619 EVALUATION AND VALIDATION (EAV) TEAM PUBLIC REPORT 3i'6
VOLUME 1(U) AIR FORCE WRIGHT AERONAUTICAL LABS

WRIGHT-PATTERSON AFB OH V L CASTOR 38 NOV 84

UNCLASSIFIED AFWAL-TR-85-ie16-VOL-1 F/G 14/2 N

LEhm mhhmmhl

-6

I~ 1122M

1.JI 2-5 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS- I963-A

.- .. i. -.. . . - -g...g- -. - -, '* -,-. . .- U .- U -.- - -- -. -• - - - - , - ,- w - -- - . . .

A.2.6 ALS TAXONOMY

1.0 MANAGEMENT
1.1 Configuration Control

1.1.1 Attribute Functions
1.1.1.1 set an attribute
1.1.1.2 get an attribute

1.1.2 Association Functions
1.1.2.1 get an association
1.1.2.2 add a reference .
1.1.2.3 change a reference •
1.1.2.4 delete a reference

1.1.3 Access Control
1.1.3.1 get access list for user
1.1.3.2 set access list for user
1.1.3.3 set access list for team

1.1.4 Archiving and History Functions
1.1.4.1 get history of a file
1.1.4.2 create a new archive source
1.1.4.3 create a new version of archived source
1.1.4.4 get most recent version of archived source
1.1.4.5 get a specified version of archived sourc-e

1.2 Information Management
1.2.1 Ada Library Management

1.2.1.1 Program Library Manager
1.2.1.1.2 Library Unit Functions

1.2.1.1.2.1 create a unit
1.2.1.1.2.2 delete a unit
1.2.1.1.2.3 copy a unit
1.2.1.1.2.4 share a unit

1.2.2 Specification Management
1.2.3 Data Dictionary Management
1.2.4 Ada Package Management
1.2.5 Test Management

1.3 Project Management
1.3.1 Cost Estimation
1.3.2 Scheduling
1.3.3 Tracking

1.4 System Management
1.4.1 Backup and Recovery

1.4.1.1 full backup
1.4.1.2 increment backup
1.4.1.3 tree backup
1.4.1.4 list of all node changes since last backup

2.0 STATIC ANALYSIS 9
2.1 Type Analysis

2.1.1 syntax and semantic analysis
2.2 Interface Analysis
2.3 Statistical Profiling

2.3.1 statistics listing
2.4 Cross Reference S

2.4.1 cross reference listing

C- 30

.

2.5 Auditing
2.6 Complexity Measurement
2.7 Completeness Checking
2.8 Consistency Checking
2.9 Structure Testing
2.10 Reference Analysis

3.0 DYNAMIC ANALYSIS
3.1 Timing Analysis
3.2 Tuning Analysis
3.3 Tracing/Debugging

3.3.1 Debugging Capabilities
3.3.1.1 Execution Control

3.3.1.1.1 start execution of program
3.3.1.1.2 stop execution of program

3.3.1.2 Information Commands
3.3.1.2.1 display value of specified global variable
3.3.1.2.2 display currently defined substituters and "

their values
3.3.1.2.3 display current time
3.3.1.2.4 display current date

3.3.1.3 DEBUG Control in the CLP
3.3.1.3.1 show each line as it is about to be

processed
3.3.1.3.2 show each command after substitution has

taken place
3.3.1.3.3 show each command after expression evaluation

has been performed
3.3.1.3.4 show the initial values of parameter

substituters for command procedures 0

4.0 TRANSFORMATION
4.1 Formatting

4.1.1 Command Line Functions
4.1.1.1 use the backspace characters
4.1.1.2 enable the boldface function
4.1.1.3 enable appearance of change bars in output
4.1.1.4 create a table of contents
4.1.1.5 trace the operation of defined format commands
4.1.1.6 specify number of blank lines at top of each page
4.1.1.7 number of lines per output page
4.1.1.8 create an index file - _
4.1.1.9 write termination message to terminal
4.1.1.10 specify where to display error messages
4.1.1.11 flagged text underlined by nonspacing character
4.1.1.12 specify where output should go
4.1.1.13 specify a group of pages to be output
4.1.1.14 pause after printing each page of output
4.1.1.15 cause text on each page to be shifted to right
4.1.1.16 underline with separate characters on next line
4.1.1.17 output line numbers from input file
4.1.1.18 use line feed to advance to top of page
4.1.1.19 specify character for normal underlining
4.1.1.20 execution of conditional commands

C-31

"~~~~~~~~~~.--"°' ' - - - - - . - • .. .- , -" - - -.• . - - - • ,, . -

4. 1.2 Flag Control Commands
4.1.2.1 treat next character as ordinary text
4.1.2.2 make next character boldface
4.1.2.3 break word here if at end of line
4.1.2.4 capitalize all of next word 0
4.1.2.5 beginning of a comment
4.1.2.6 start of formatter command
4.1.2.7 hyphenate a word if end of line
4.1.2.8 index the next word
4.1.2.9 make next character lower case
4.1.2.10 overstrike previous character with next character
4.1.2.11 insert extra interword space after character
4.1.2.12 insert unexpandable space
4.1.2.13 subindex next word or phrase in INDEX command
4.1.2.14 insert date or time
4.1.2.15 underline the next character
4.1.2.16 make next character upper case S

4.1.3 Formatter Commands
4.1.3.1 specify beginning of appendix, identifying

letter, and title
4.1.3.2 automatically issue JUSTIFY
4.1.3.3 automatically paragraph
4.1.3.4 use header level titles for running subtitles
4.1.3.5 start new paragraph for each line that doesn't

start with tab or a space
4.1.3.6 insert number of blank lines that are specified
4.1.3.7 end current line immediately
4.1.3.8 center line of text around character or line
4.1.3.9 specify beginning of chapter,number it,and title
4.1.3.10 accept control characters as normal text
4.1.3.11 put current date in running header
4.1.3.12 specify sequential lettering of appendices
4.1.3.13 specify form of sequential numbers of chapters

4.1-.314 specify sequential numbering of items a list "
4.1.2.15 specify form of sequential numbers of section .

headers
4.1.2.16 specify form of sequential numbers of pages

4.1.2.17 specify form of sequential lettering of subpage
characters

4.1.2.18 put alphabetized index into single column form
on a new page

4.1.2.19 control insertion of vertical bars at start of
text

4.1.2.20 allows index flag and qualifier
4.1.2.21 enable collection of data for table of contents
4.1.2.22 create index without page number reference
4.1.2.23 leave room at top of page to insert a figure
4.1.2.24 same as above, but if not enough room end page

immediately and start at top of next page

4.1.2.25 treat line ending like spaces
4.1.2.26 running head appears on first page of document

without chapters -
4.1.2.27 place text at bottom of current page
4.1.2.28 specify head on header level

C- 32

,.-........- ~~~~~ ~-.....-.'...................... -............. "............ ',....'..,..".......-.......... .
L :--.

4.1.2.29 print one or two lines of information at top of
page

4.1.2.30 specify case of word page that proceeds the page
number

4.1.2.31 determines if a portion of a file is processed,
according to conditions set by user

4.1.2.32 first line of text to begin at specified position

4.1.2.33 create index entry with page number reference
4.1.2.34 insert spaces between words to make them reach

right hand margin
4.1.2.35 keep blank lines from input file in output file 0

4.1.2.36 rearrange running head on pages
4.1.2.37 set left margin to specify position
4.1.2.38 specify beginning of a list
4.1.2.39 specify beginning of each element in a list

4.1.2.40 format text exactly as typed
4.1.2.41 insertion of the space for only one line of text

4.1.2.42 highlight portion of text
4.1.2.43 specify letter with which appendixes begin

4.1.2.44 specify number with which chapters will begin

4.1.2.45 specify beginning number of headers
4.1.2.46 specify number with which items will begin
4.1.2.47 specify beginning of a new number sequence

0

4.1.2.48 specify beginning of running page numbers
4.1.2.49 specify beginning of subpage numbers
4.1.2.50 start a new page
4.1.2.51 specify maximum number of lines per page and

maximum number of characters per line

4.1.2.52 enable paging
4.1.2.53 specify spacing and page placement when

paragraphing
4.1.2.54 restore insertion of extra space after .,;,:,?,!

4.1.2.55 put alphabetized index in column format
4.1.2.56 specify characters to be repeated
4.1.2.57 process several format files at the same time

and merge them into one output file
4.1.2.58 position a single line of text relative to right

margin
4.1.2.59 set the right margin
4.1.2.60 insert into table of contents, file commands,

files, and text
4.1.2.61 specify current date
4.1.2.62 specify current time
4.1.2.63 preset level of next section head
4.1.2.64 specify values for paragraph
4.1.2.65 insert blank lines specified by SPACING _,

4.1.2.66 set amount of spacing between lines of text
4.1.2.67 change format of levels of section heads
4.1.2.68 begin a new page and a new format of page

numbering
4.1.2.69 specify a subtitle for a running head
4.1.2.70 change the current position of tab stops _
4.1.2.71 specify the amount of text on a single page
4.1.2.72 specify the title for a running head

C-33 0w

• :::.................. :.....................:'"...... ,....... ,..

:: :: :: ::...,..-... , ,..-:.. ... ,,,.,,,.,-,., . .. -.'.:.," '
..".

4.1.2.73 identifies which conditional commands will be
processed

4.2 Optimization
4.3 Compilation

4.3.1 Listing Control Options
4.3.1.1 SOURCE - produce a source listing
4.3.1.2 REFORMAT - reformat the source
4.3.1.3 LIST INCLUDE - list text brought in by include
4.3.1.4 PRIVATE - list text in private part of package

specification
4.3.1.5 NOTES - include diagnostics of severity NOTE in .

listing
4.3.1.6 ATTRIBUTE - produce a symbol attribute listing
4.3.1.7 XREF - produce a cross reference listing
4.3.1.8 STATISTICS - produce a statistics listing
4.3.1.9 MACHINE - produce a machine code listing
4.3.1.10 DIAGNOSTICS - produce a diagnostics summary .

listing
4.3.2 Maintenance Aid Options

4.3.2.1 COMPILER DEBUG - permits maintenance options to
have effect

4.3.2.2 SAVE CONTAINER nn - save state of container
in a-temporary-file

4.3.2.3 USE CONTAINER nn - use container stored in
temporary file

4.3.2.4 FLAG nn string - specify options which have
effect on specified portion of compilation

4.3.2.5 maintenance nn - maintenance and traces should
apply to thTs statement

4.3.2.6 STATEMENT RANGE nnn nnn - maintenance and
traces sho'uld apply-to this range of text

4.3.2.7 ID identifier trace information about this
identifier

4.3.2.8 STANDARD COMPILE - compile a new version of
package 3TANDARD

4.3.3 Other Compiler Options
4.3.3.1 CODE ON WARNING - generate code when there are

diagnostics of severity warning
4.3.3.2 CONTAINER GENERATION - produce a container
4.3.3.3 OPTIMIZE - optimize in accordance to optimize in

text
4.3.3.4 FREQUENCY - count how often things are executed
4.3.3.5 TRACE BACK - listing of all subprograms

executing when exception raised
4.4 Editing

4.4.1 Syntax Directed
4.4.2 Basic Editor

4.4.2.1 Key Pad Functions
4.4.2.1.1 move cursor to top of buffer
4.4.2.1.2 move cursor to bottom of buffer
4.4.2.1.3 move cursor left/right one character/word
4.4.2.1.4 move cursor up/down one character/word/line
4.4.2.1.5 move text to a temporary buffer
4.4.2.1.6 restore text in buffer to original location

C- 34

.. .-. .'. .

--.-.. '%. .--

4.4.2.1.7 delete a character/word/line
4.4.2.1.8 restore deleted character/word/line
4.4.2.1.9 change the case of character/string
4.4.2.1.10 insert character/word/line/page
4.4.2.1.11 locate a string above/below current position
4.4.2.1.12 locate next occurrence of string above/below

position
4.4.2.1.13 delete edit buffer . c
4.4.2.1.14 move text from buffer to file "'.-

4.4.2.2 Line Editing Functions
4.4.2.2.1 all of key pad functions, plus ability to

specify a range of text
4.4.2.2.2 copy a line from one buffer to another
4.4.2.2.3 copy a spe-ified range of text into a file
4.4.2.2.4 resequence line numbers
4.4.2.2.5 display a specified range of text'

4.4.2.3 Non Key Pad Functions
4.4.2.3.1 all of key pad functions

5.0 USER OUTPUT
5.1 Diagnostics

5.1.1 Error reporting through the ALS
5.1.1.1 FATAL - user/internal error reporting of highest

severity (statement number/severity/code/
description)

5.1.1.2 SYSTEM - internal error reporting (satement
number/severity/code/description)

5.1.1.3 ERROR - user/inernal error reporting (statement
number/severity/code/description)

5.1.1.4 WARNING - possible unintended results by user
(statement number/severity/code/
description)

5.1.1.5 NOTE - reporting of unusual action taken (statement
number/severity/code/description)

5.2 Listings S
5.2.1 Ada source text listing
5.2.2 symbol attribute listing
5.2.3 cross reference listing
5.2.4 compilation statistics listing
5.2.5 machine code listing
5.2.6 diagnostics summary listing 0
5.2.7 compilation summary listing

5.3 Text
5.4 Tables
5.5 Graphics
5.6 On Line Assistance

5.6.1 - Command Assistance
5.6.1.1 help feature in command processor

5.6.1.1.1 help with no parameter - information about
HELP command

5.6.1.1.2 help with parameter - information about
specific subject

5.6.1.1.3 quick help - single piece of Information 0
about specified subject

C-35

........- :::. : . :.- "-1:. : . '.."-'-'.-.- . '--..:-.. • - '
.,--..... ' :::

5.6.1.2 help feature of EDT editor
5.6 1.2.1 help with no parameter - information about

HELP facility
5.6.1.2.2 help with parameter - information about

specific subject
5.6.2 Error Assistance
5.6.3 On Line Tutor
5.6.4 Definition Assistance
5.6.5 Menu Assistance

6.0 MACHINE OUTPUT

6.1 Object Code
6.1.1 VAX - 11/780 object code

7.0 SUBJECT INPUT
7.1 Text Input
7.2 Data Input S
7.3 Code Input

7.3.1 Ada code input
7.4 VHLL input

8.0 CONTROL INPUT

8.1 Parameters
8.2 Commands

8.2.1 function, procedure calls, script invocation
8.2.1.1 control commands

8.2.1.1.1 start execution of a program
8.2.1.1.2 stop execution of a program

8.2.2 database manipulation
8.2.2.1 file manipulation

8.2.2.1.1 copy a file
8.2.2.1.2 delete a file
8.2.2.1.3 create a file
8.2.2.1.4 rename a file

8.2.2.2 Variation Set Functions .
8.2.2.2.1 create a variation set
8.2.2.2.2 delete a variation set

8.2.3 termination
8.2.3.1 exit - leave ALS environment
8.2.3.2 logout
8.2.3.3 suspend - stop ALS session

8.2.4 login
8.2.5 control commands

8.2.5.1 if - execute a sequence of one or more
commands depending on a condition

8.2.5.2 null - process next command
8.2.5.3 loop - repeat execution of a sequence of commands -

in a loop body
8.2.5.4 loop with while - evaluate and test condition

before executing loop body
8.2.5.5 exit - terminate enclosing loop

8.2.6 I/O redirection
8.2.6.,1 redirect a commands standard input
8.2.6.2 redirect a commands standard output

C- 36

I0
8.2.7 background execution of commands
8.2.8 nested CLP commands
8.2.9 CLP substitutors
8.2.10 predefined substitutors

8.2.10.1 #STATUS
8.2.10.1.1 indicate success or failure of invoking

command
8.2.10.1.2 indicate success or failure of execution of

program or command procedure
8.2.10.1.3 information about executed program or

command procedure - >
8.3 Command Procedures 0

8.3.1 create a command procedure
8.3.2 invoke a command procedure
8.3.3 pass parameter in an out of procedure

8.4 Pipes

0

C.-

.0

C- 37 ""- -

= - .-. .• ° . . - ° - - *-- . --. . . * * • ...** -

" ;- . :,: . .-"-.-:..-.--.-.?.-. .<-. .-:-..---. ...-.............- ..-...-... -. -

A.3 ADA LANGUAGE SYSTEM/NAVY DESCRIPTION

A.3.1 The ALS/N system will be implemented as extensions to the Army's
Ada Language System. The ALS/N has nine functional areas broken down
into two catagories. Catagory one is called the Minimal Ada
Programming Support Environment (MAPSE) and includes as the functional
areas the Language Processor, the Separate Compilation Support, the
Code Manipulation, the Machine Transportable Support Software (MTASS)
Interface, the Text Manipulation, the User Access Support, and the
MAPSE Run-Time Environment. The MTASS system currently support the
AN/UYK-43, AN/UYK-7, AN/UYK-20, AN/UYK-44 and AN/AYK target computers.
The other catagory is known as the Run-Time Environment (RTE)
consisting of the Runtime Operating System (RTOS) and the Run-Time
Application Support (ATAS).

A.3.2 The MAPSE catagory software will execute within the host
computer (initially VAX/VMS). The RTE catagory will run on Navy
standard computers (termed "embedded target computers"). The RTE will
provide support for the target computers and will not attempt to
provide host-like services.

A .3.3 The ALS/N supports two classes of target computers. The term
"Ada/L" refers to AN/UYK-43 (32 bit computer) and "Ada/M" refers to S
support of the AN/UYK-44 and AN/AYK-14 (16 bit computers).

A.3.4 The MAPSE catagory will consist of Ada/L and Ada/M Code
Generators, Ada/L and Ada/M Linkers, Ada/L and Ada/M Embedded Target
Listing Tools, Ada/L and Ada/M Importer, Ada/L and Ada/M exporter, and
Ada/L and Ada/M Target Debugger. The RTE catagory will consist of •
Ada/L and Ada/M Run-Time Executives, Ada/L and Ada/M Run-Time Support
Library, Ada/L and Ada/M Run-Time Loaders, Ada/L and Ada/M Run-Time
Debuggers and Ada/L and Ada/M Run-Time Perf'ormance Measurement Aids.
Included as a Program Support Environment is Configuration Management
Identification Tools, General Purpose Text Editor, Text Formatter,
Report Generator, Common Interface Routine, Interhost .
Telecommunications Interface and Embedded Target Computer Interface.

c-38

• - ,... . . , ," . . ,'

APPENDIX B

REFERENCES

I1 Buxton, J.N., Requirements for Ada Programming Support Environment
(APSE) - -"STONEMAN", U.S. Department of Defense, February 1980.

r2l Houghton, R., A Taxonomy of Tool Features for the Ada Programming
Support Environment (APSE), U.S. Department Commerce, National Bureau S
Of Standards, December 1982, Issued February 1983.

[31 Intermetrics, Inc., "System Specification for Ada Integrated
Environment", 12 November 1982.

[41 Intermetrics, Inc., "Computer Program Development Specification
for Ada Integrated Environment: KAPSE/Database", 12 November 1982.

[51 Intermetrics, Inc., "Computer Program Development Specification
for Ada Integrated Environment: Ada Compiler Phases", 5 November
1982.

[61 Intermetrics, Inc., "Computer Program Development Specification
for Ada Integrated Environment: DIANA", 23 December 1982.

[71 Intermetrics, Inc., "Computer Program Development Specification
for Ada Integrated Environment: Program Integration Facilities". 4
August 1983.

[81 Intermetrics, Inc., "Computer Program Development Specification
for Ada Integrated Environment: MAPSE Command Processor", 1 December
1982.- -

[91 Intermetrics, Inc., "Computer Program Development Specification .-
for Ada Integrated Environment: MAPSE Debugging Facilities", 5
January 1983. [10] Tartan Laboratories, "DIANA Reference Manual",
Revision 3, 28 February 1983.

[11] SofTech, Inc., Ada Language System Specification, Volumes I and
II, June 1981.

[21 SofTech, Inc., Ada Language System Compiler Machine Independent
Section B5 Specification, February 1982.

[131 SofTech, Inc., Ada Language System VAX 11/780 Code Generator B5
Specification, January 1982.

[14] SofTech, Inc., Ada Language System VAX 11/780 Linker B5
Specification, June 1981.

[151 SofTech, Inc., Ada Language System Configuration Control Tools B5
Specification, December 1981.

C-39

_ * . .*.

16 1 SofTech, Inc., Ada Language System File Administrator B5
Specification, January 1982.

[17] SofTech, Inc., Ada Language System Textbook, 28 November 1983. e

[18] Evaluation and Validation (E&V) Plan, Version 1.0, 30 November

1983.

C-40-

APPENDIX C

DEFINITIONS

0

ASSOCIATIONS - Named properties of a node with values that are
collections of pointers to other nodes.

CATALOG - A catalog provides a means of accessing a set of logically 0
connected compilation units which may or may not comprise an entire
program library. There are two kinds of catalogs: a primary catalog,
analogous to a working directory, providing access to the library
units currently under development by a particular programmer or group
of programmers; and a resource catalog, analogous to the traditional
notion of a library, providing access to units which might be used as 0
utility routines or "resources" by other library units. A primary may
be frequently changed, whereas, a resource catalog is relatively
stable.

COLLECTION - A collection is a set of database objects which provide a

convenient unit for resource allocation, access control, and revision S
maintenance. Catalogs are represented as objects within a collection.

CONTAINER - A file within a program library. It includes
specifications of externally visible Ada names, statistics, object
code, and other information. One container is produced for each
compilation unit compiled.

DOMAIN - A domain is a collection of one or more separate data
structures (VMSDs or subdomains) that may reference one another.

PARTITION - A partition is a set of composite objects "grouped
together" according to their distinguishing and non-distinguishing
attributes.

REP ANALYZER - The Rep Analyzer combines the definitions for one or
more virtual record types and enforces the restrictions and - -
conventions required by VMM. The Rep Analyzer generates a new Ada
package specification and body for each virtual record type (called
the virtual record type declaration); and a package specification and
body called the access package that provides access to other package
templates that provides operations to manipulate the iefined data
structures.

S ROLE - A role represents a logical set of participants allowing S
possible access and manipulation of extended objects.

ROLE MODIFIER - Role modifiers are predefined for all extended
objects. They determine extra rights and limitations associated with
the roles held. Some include: _OWNER, _READONLY, and _OVERSEER.

SUBDOMAIN (VMSD) - A single VMM data structure is a directed graph

C-41

constituting a subdomain (VMSD) that can, in several contexts, be
accessed as a single entity. Each VMSD contains VMM objects whose
types are defined in one package specification input to the Rep
Analyzer.

SUBSTITUTERS - Substitute identifiers in the command language used to
denote string substituters. When appearing in a command, it is
replaced by the value of the string for which it stands for.

VARIATION SET - A set containing different versions of an object, each
element co-exists with the others.

VIRTUAL MEMORY METHODOLOGY - The VMM (Virtual Memory Methodology)
subsystem is a tool for creating and manipulating abstract data
structures (attributed directed graphs, in particular) in a machine-
independent manner. A virtual memory paging scheme makes the size of
any data structure independent of memory constraints of any particular S
hardware configuration.

VMM LOCATOR - A VMM locator is a reference to virtual records (VMM
objects) that reside in other structured VMSDs. A VMM locator is the

p only means of consistently designating a VMM object. A locator is
similar to an Ada access value since it is a typed pointer with values 5
generated by allocation operations, and a distinguished null value
which designates no object at all. The differences between locators
an-i Ada access values are that a VMM locator value generated by an
allocation during program activation can be written to an external
file and then be read by a subsequent program activation and still be
guaranteed to designate the same VMM object. Also, the addressing
range of a VMM locator is defined by the implementation of the VMM
package and is not dependent on host machine characteristics or the
size of the run-time heap available to the program activation.

VMM ROOT LOCATOR - A root locator is a distinguished VMM locator which
may be explicitly set or examined by VMM operations.

VIRTUAL RECORD NOTATION - Virtual record notation is data in
human-readable form.

WINDOWS - Windows specify the roles (and role modifiers) to be used
within an extended object in terms of the roles used in the extended S
object enclosing the window. There are two kinds of windows: A
primary window links an extended object to its enclosing composite
object. A secondary window allows an object to be viewed from a . -.

location other than the

C-42

, S

c0

L APPENDIX D

ACRONYMS

K .O
AIE - Ada Intergrated Environment

* AJPO - Ada Joint Program Office

ALS - Ada Language System

APSE - Ada Programming Support Environment

BILL - But It's Low Level - Intermetrics developed Low Level
Language

CL - Command Language S

CLI - Command Language Interpreter

CLP - Command Language Processor

CMS - IBM 4341 operating system S

DAG Direct Acyclic Graph

DIANA - Descriptive Intermediate Attributed Notation for Ada

. DoD - Department of Defense

" EDT - VAX 11/780 editor

E&V m Evaluation and Validation

KAPSE - Kernel Ada Programming Support Environment

LEXSYN - Lexical and Syntatic phase of AlE compiler

MAPSE - Minimal Ada Programming Support Environment

MCL - MAPSE Command Language

MCP - MAPSE Command Processor

MI - Machine Independent (section of ALS compiler)

OS/VS1 - IBM 4341 operating system

PIF - Program Interface Facility

*UTS - Amdohl developed UNIX-like operating system

VM - Virtual Memory - IBM 4341 set of low level routines

C-43

,:"7:,_

p. ,,o .
::i -:, ..-2 :, -' . - .. .- .. -.- . . - -. , .. -: 2:::9

VMWM -Virtual Memory Methodology

VMS -Vax 11/780 operating system

VMSD -Virtual Memory Subdomain0

C-44

APPENDIX E

APSEWG MEMBERS

Elizabeth Kean (CHAIR)
RADC/COES
Griffiss AFB, NY

Gina Burt (VICE CHAIR)
AFALC/PTEC
Wright-Patterson AFB OH

Terry Humphrey
Johnson Space Center
Houston, TX

Mars Gralia
John Hopkins University
Laurel, MD

Guy Taylor =

FCDSSA .6
Virginia Beach, VA

Georgeanne Chitwood Capt Albert Deese
ASD/ADOL ASD/ADOL
Wright-Patterson AFB OH Wright-Patterson AFB OH

Doug Yarborough William Grabowski
GTE Government Systems GTE Government Systems
1 Federal Street 1 Federal Street
Billerica, MA Billerica, MA

DISTINGUISHED REVIEWERS:

Paul Reilly
Data General Corporation
4400 Computer Drive
Westboro, MA 0

Bard Crawford
TASC
1 Jacob Way
Reading, MA

Marlow Henne
Harris Corporation
150 Wikham Rd
Melbourne, FL

C- 45

-. 5. . * 5 S

APPENDIX D -

EVALUATION and VALIDATION
TECHNICAL COORDINATION STRATEGY DOCUMENT

VERSION 1.0.
28 AUGUST 1984-

D-1.

.

28 August 1984

Table of Contents

1. INTROD)UCT ION.....................................-7

1.1 Objective of the Technical Coordination Strategy Document . . . D-7

1.2 Background..................................D-7

2. SCOP D-8

3. APPROACH...................................D-9

3.1 Invited Briefings............................D-9

3.2 Technical Coordination Statements/TECWG Briefings.- 9

4. IDENTIFICATION/ELABORATION OF RELATED TECHNICAL EFFORTS D-10

4.1 Ada C3L Test and Evaluation.......................D-10
4.1.1 Purpose..............................-10
4.1.2 Relationship to the E&V Task..................-10
4.1.3 Benefits to the E&V Task- 10
4.1.4 Benefits to the Related Effort/Organization........-10
4.1.5 Impact on E&V Task Schedules..................-10
4.1.6 Impact on Related Effort/Organization Schedules . 0 -11

4.1.7 Required Level of Coordination...............-11
4.1.8 Resolution of Issues........................11l
4.1.9 Focal Point..............................-l1

4.2 Ada Integrated Environment........................-11

4.2.1 Purpose.............................D-11
4.2.2 Relationship to the E&V Task..................-12
4.2.3 Benefits to the E&V Task- 12

4.2.4 Benefits to the Related Effort/Organization........-12
4.2.5 Impact on E&V Task Schedules-12
4.2.6 Impact on Related Effort/Organization Schedules D-12
4.2.7 Required Level of Coordination................D-12
4.2.8 Resolution of Issues.......................D-12
4.2.9 Focal Point...........................D-13

4.3 Ada Joint Program Office.........................-13
4.3.1 Purpose..............................D-13
4.3.2 Relationship to the E&V Task-13
4.3.3 Benefits to the E&V Task- 13S
4.3.4 Benefits to the Related Effort/Organization.......D-14
4.3.5 Impact on E&V Task Schedules-14
4.3.6 Impact on Related Effort/Organization Schedules . 0 -14
4.3.7 Required Level of Coordination...............-14
4.3.8 Resolution of Issues........................-14
4.3.9 Vocal Point...........................D-t4

4.4 Ada Language System..............................-15
4.4.1 Purpose................................1i
4.4.2 Relationship to the E&V Task-15
4.4.3 Benefits to the E&V Task- 15
4.4.4 Benefits to the Related Effort/Organization..........-15
4.4.5 Impact on E&V Task Schedules-15

D-2

28 August 1984 0

'Fable of Contents (Continued)

4.4.6 Impact on Related Effort/Organization Schedules D-15
4.4.7 Required Level of Coordination D-15 0
4.4.8 Resolution of Issues D-16
4.4.9 Focal Point D-16

4.5 Ada Test and Verification System. D-16
4.5.1 Purpose D-16
4.5.2 Relationship to the E&V Task D-i6."......"
4.5.3 Benefits to the E&V Task D-17 0
4.5.4 Benefits to the Related Effort/Organization D-17
4.5.5 Impact on E&V Task Schedules D-17
4.5.6 Impact on Related Effort/Organization Schedules D-17
4.5.7 Required Level of Coordination D-17
4.5.8 Resolution of Issues D-17
4.5.9 Focal Point I)-1.7

4.6 Ada Validation Organization D-18
4.6.1 Purpose D-18
4.6.2 Relationship to the E&V Task D-18
4.6.3 Benefits to the E&V Task D-18
4.6.4 Benefits to the Related Effort/Organization D-18
4.6.5 Impact on E&V Task Schedules D-18 S
4.6.6 Impact on Related Effort/Organization Schedules D-18
4.6.7 Required Level of Coordination D-19

4.6.8 Resolution of Issues D-19
4.6.9 Focal Point D-19

4.7 Ada-1750A Runtime D-19
4.7.1 Purpose D-19 S
4.7.2 Relationship to the E&V Task D-19

4.7.3 Benefits to the E&V Task D-20
4.7.4 Benefits to the Related Effort/Organization D-20
4.7.5 Impact on E&V Task Schedules D-20
4.7.6 Impact on Related Effort/Organization Schedules D-20
4.7.7 Required Level of Coordination D-20 -
4.7.8 Resolution of Issues D-20
4.7.9 Focal Point D-20

4.8 Air Force Computer Resource Management Technology D-21
4.8.1 Purpose D-21
4.8.2 Relationship to the E&V Task D-21
4.8.3 Benefits to the E&V Task D-21
4.8.4 Benefits to the Related Effort/Organization. D-21
4.8.5 Impact on E&V Task Schedules- 21
4.8.6 Impact on Related Effort/Organization Schedules D-22
4.8.7 Required Level of Coordination D-22

4.8.8 Resolution of Issues D-22
4.8.9 Focal Point D-22

4.9 Common Ada Missile Packages D-22
4.9.1 Purpose D-22
4.9.2 Relationship to the E&V Task D-23
4.9.3 Benefits to the E&V Task D-23
4.9.4 Benefits to the Related Effort/Organization D-23
4.9.5 Impact on E&V Task Schedules D-23
4.9.6 Impact on Related Effort/Organization Schedules D-23
4.9.7 Required Level of Coordination D-23

D-3

. . .- . -.,. .

28 August 1984

Table of Contents (Continued)

4.9.8 Resolution (f Issues D-24
4.9.9 Focal Point . 1D-24

4.10 Johnson Space Center Ada Project I-24

4.10.1 Purpose)-24

4.10.2 Relationship to the E&V Task -25......-..
4.10.3 Benefits to the E&V Task D-25
4.10.4 Benefits to the Related Effort/Organization D-25
4.10.5 impact on E&V Task Schedules 1-25
4. 10.6 Impact on Related Effort/Organization Schedules . I)-25
4.10.7 Required Level of Coordination)-25
4.10.8 Resolution of Issues D-25
4.10.9 Focal Point)-26

4.11 Joint Service Software Engineering Environment ID-26
4.11.1 Purpose 1D-26
4.11.2 Relationship to the E&V Task D-26
4.11.3 Benefits to the E&V ' 'ask 1-27
4.11.4 Benefits to the Related Effort/Organization D-27
4.11.5 Impact on E&V Task Schedules D-27
4.11.6 impact on Related Effort/Organization Schedules . D-27
4.11.7 Required Level of Coordination D-27
4.11.8 Resolution of Issues D-28
4.11.9 Focal Point D-28

4.12 KA PSE Interface Team/KAPSE Interface Team from Inductry and
Academia D-28
4.12.1 Purpose D-28
4.12.2 Relationship to the E&V Task D-29
4.13.3 Benefits to the E&V Task D-29
4.12.4 Benefits to the Related Effort/Organization D-29
4.12.5 Impact on E&V Task Schedules D-29
4.12.6 Impact on Related Effort/Organization Schedules . D-30
4.12.7 Required Level of Coordination D-30
4.12.8 Resolution of Issues D-30
4.12.9 Focal Point)-30

4.13 Methodology Coordinating Team D-31
4.13.1 Purpose D-31
4.13.2 Relationship to the E&V Task D-31
4.13.3 Benefits to the E&V Task 1-31
4.13.4 Benefits to the Related Effort/Organization D-31 S
4.13.5 Impact on E&V Task Schedules ID-31
4.13.6 Impact on Related Effort/Organization Schedules . D-31
4.13.7 Required Level of Coordination D-32
4.13.8 Resolution of Issues D-12
4.13.9 Focal Point D-32

4.14 Prototype Advanced Ada Prograrmning Support Environment . . -32
4.14.1 Purpose D-32

4.14.2 Relationship to the E&V Task D..--33
4.14.3 Benefits to the E&V Task D.-33

4.14.4 Benefits to the Related Effort/Organization)-33
4.14.5 Impact on E&V Task Schedules D-33
4.14.6 Impact on Related Effort/Organization Schedules . D-33
4.14.7 Required Level of Coordination D-33.....
4.14.8 Resolution of Issues -33-.......-....
4.14.9 Focal lPoint D-33

D-4 0

.A, " - - ~ . . • • '

28 August 1984

Table of Contents (Continued)

4.15 Software Engineering Automation for Tactical Embedded Computer

Systems D-34
4.15.1 Purpose D-34
4.15.2 Relationship to tile E&V Task D-34
4.15.3 Benefits to the E&V Task..... D-34
4.15.4 Benefits to the Related Effort/Organization D-35

4.15.5 Impact on E&V Task Schedules D-35
4.15.6 Impact on Related Effort/Organization Schedules . D-35
4.15.7 Required Level of Coordination D-35 0

4.15.8 Resolution of Issues D-35
4.15.9 Focal Point D-35

4.16 STARS Human Resources and Engineering Task Area D-36
4.16.1 Purpose D-36
4.16.2 Relationship to the E&V Task D-36
4.16.3 Benefits to the E&V Task D-36 0
4.16.4 Benefits to the Related Effort/Organization. D-36
4.16.5 Impact on E&V Task Schedules D-36
4.16.6 Impact on Related Effort/Organization Schedules . D-37

4.16.7 Required Level of Coordination D-37
4.16.8 Resolution of Issues D-37 -

4.16.9 Focal Point D-37
4.17 STARS Measurement Task Area D-37

4.17.1 Purpose D-37

4.17.2 Relationship to the E&V Task D-38
4.17.3 Benefits to the E&V Task D.............. -38
4.17.4 Benefits to the Related Effort/Organization.........D-38
4.17.5 Impact on E&V Task Schedules D-38 0
4.17.6 Impact on Related Effort/Organization Schedules D-38 .D

4.17.7 Required Level of Coordination D-38
4.17.8 Resolution of Issues D-39
4.17.9 Focal Point.................... D-39

4.18 STEP D-39 . -

4.18.1 Purpose D-39 6

4.18.2 Relationship to the E&V Task D-40
4.18.3 Benefits to the E&V Task D-40
4.18.4 Benefits to the Related Effort/Organization D-40
4.18.5 Impact on E&V Task Schedules D-40
4.18.6 Impact on Related Effort/Organization Schedules D-41

4.18.7 Required Level of Coordination D-41
4.18.8 Resolution of Issues D-41

4.18.9 Focal Point D-41
4.19 Tactical Ada Guidance D-42

4.19.1 Purpose D-42
4.19.2 Relationship to the E&V Task D-42

4.19.3 Benefits to the E&V Task D-42 - -
4.19.4 Benefits to the Related Effort/Organization. D-42
4.19.5 Impact on E&V Task Schedules. D-42
4.19.6 Impact on Related Effort/Organization Schedules . D-43
4.19.7 Required Level of Coordination D-43
4.19.8 Resolution of Issues D-43
4.19.9 Focal Point D-43

4.20 Telesoft-Ada Programming Support Environment D-43
4.20.1 Purpose D-43

D-5

28 August 1984 0

Table of Contents (Continued)

4.20.2 Relationship to the E&V Trask..............D-44
4.20.3 Benefits to the E&V Task D-44
4.20.4 Benefits to the Related Effort/Organization. D-44
4.20.5 impact on E&V Task Schedules..............D-44-
4.20.6 Impact on Related Effort/Organization Schedules ... D-44 . .-

4.20.7 Required Level of Coordination. D-44 ..

4.20.8 Resolution of Issues D-44
4.20.9 Focal Point ... D-440

4.21 Very High Speed Integrated Circuits..............D-45
4.21.1 Purpose........................D-45
4.21.2 Relationship to the E&V Task..............D-45
4.21.3 Benefits to the E&V Task D-45
4.21.4 Benefits to the Related Effort/Organization. D-45
4.21.5 Impact on E&V Task Schedules..............D-45 0
4.21.6 Impact on Related Effort/Organization Schedules ... D-45
4.21.7 Required Level of Coordination.............D-46
4.21.8 Resolution of Issues..................D-46
4.21.9 Focal Point D-46

4.22 Virginia Polytechnic Institude APSE Validation Effort* . D-46
4.22.1 Purpose........................D-46 S
4.22.2 Relationship to the E&V Task..............D-47
4.22.3 Benefits to the E&V Task D-47
4.22.4 Benefits to the Related Effort/Organization.- 47
4.22.5 Impact on E&V Task Schedules...............-47

4.22.6 Impact on Related Effort/Organization Schedules ... D-47--
4.22.7 Required Level of Coordination.- 48 0
4.22.8 Resolution of Issues- 48
4.22.9 Focal Point......................D-48.

4.23 WWMCCS Information System...................D-48*
4.23.1 Purpose.........................-48
4.23.2 Relationship to the E&V Tak D-49
4.23.3 Benefits to the E&V Task-49
4.23.4 Benefits to the Related Effort/Organization. D-49
4.23.5 Impact on E&V Task Schedules- 49
4.23.6 Impact on Related Effort/Organization Schedules ... D-50
4.23.7 Required Level of Coordination.............D-50
4.23.8 Resolution of Issues...................-50
4.23.9 Focal Point.......................-50

1. Appendix A.............................-51

1.1 Acronyms.............................-51

It. Appendix B...........................D-54

11.1 TECWG Members............................-54.

111. Appendix C...........................D-55

111.1 RTEM..............................-55

D-6

28 August 1984

1. INTRODUCTION

1.1 Objective of the Technical Coordination Strategy Document

The objective of the Technical Coordination Strategy Document (TCSD) is to

provide a mechanism whereby both Department of Defense (DoD) and contractor

technical efforts/organizations which are potentially related to the Evaluation

and Validation (E&V) of Ada Programming Support Environments (APSEs) Task, may

be identified. Specifically, the TCSD will : a) identify related technical

efforts; b) identify relationships between the E&V Task and each related effort;

c) identify areas of mutual benefit; d) identify impact of schedules; e)

identify the level of coordination required between the E&V Task and each

related effort; and f) identify issues which require resolution with respect to

the mutaial benefit of both the E&V Task and the particular related effort
involved.

1.2 Background

The purpose of the E&V Task, which is sponsored by the Ada Joint Program
Office (AJPO), is to develop the technology by which APSEs will be evaluated and
validated. The term "evaluation" represents a qualitative assessment of an APSE

component for which no objective standard exists. The term "validation"

represents a quantitative measurement of an APSE component for which both a

standard and metrics exist. Techniques and tools will be developed which will
provide a capability to perform assessment of APSEs and to determine conformance

of APSEs to the Common APSE Interface Set (CAIS), which is being developed by

the Kernel Ada Programming Support Environment (KAPSF) Interface Team (KIT) and

their companion organization, the KAPSE Interface Team from Industry and

Academia (KITIA).

As the E&V technology is developed, it will be made available to the user

community for implementation by the DoD components, industry, and academia as

appropriate.

D-

0

D-7 "

S '

28 August 1984

2. SCOPE

The overall goal of the TCSD is to establish lines of communication between
the E&V Task and other related DoD and industry efforts/organizations. It is
essential to the success and effectiveness of the E&V Task as a whole, to
coordinate with other related efforts. This type of coordination and 0
communication will keep other organizations and efforts abreast of the E&V Task
and its resulting technology, and will identify those areas of evaluation and
validation which are of mutual benefit. This exchange of technical information -
relevant to E&V will be monitored by the Technical Coordination Working Group
(TECWG) and transmitted to the other E&V working groups as appropriate.

It is the responsibility of the TECWG to : 1) develop the TCSD; 2) provide
technical presentations to the E&V Team on related technical efforts identified;
and 3) provide position papers throughout the duration of the E&V Task which
address particular aspects of the E&V Task with related tasks/efforts. Also,
the TECWG is responsible for both providing and updating the status of these
technically related efforts to the Team, as well as enhancing this document in 0
future revisions with the identification of additional tasks/efforts, and
updated information on currently identified efforts.

This initial version of the TCSD was developed by combining the various
Technical Coordination Statements which were prepared by members of the E&V
Team, who are presently involved or associated with the identified task/effort. S
The following represents the Technical Coordination Statement template used by
each E&V Team member

1. Name of the technically related effort

2. Purpose

3. Relationship to the E&V Task

4. Benefits to the E&V Task

5. Benefits to the related effort/organization

6. Impact on E&V Task schedules

7. Impact on related effort/organization schedules

8. Required level of coordination

9. Resolution of issues

10. Focal point

D

D-8 S

.- .- .--.-." i. ? --' .- i ... -...-- ii -. -.-. -" ---' .- i .i " -

, .- .. -.,- ,- ._. _ .-,- .- ,- ._.. ,_ _,- , _ ,_.- .-_ -_ ._..-- .. -- _ _, _ _ _ ." _x ._ ,x .,, 2 1,i 1 .2 2 2 i~ iS

28 August 1984 0

3. APPROACH

Currently, two primary methods to establish and promote coordination between
the E&V Task and other related technical efforts/organizations have been -
identifiP, and a nutlined below. 0

3.1 Invited Briefings

Invitatiuns -ii be extended to particular individuals to attend the quarterly
E&V Team meetings as appropriate, for the purpose of briefing specific related 9
efforts. These briefings will provide interactive communication and dialogue
between the E&V Team members and the particular briefer with respect to exchange
of technical information.

3.2 Technical Coordination Statements/TECWG Briefings 0

Technical Coordination Statements will be used in conjunction with the method
indicated in paragraph 3.1. The purpose of these statements is to identify a
related effort (or organization), and elaborate upon various aspects of this
relationship. Currently, ten specific relational aspects are identified on the
Technical Coordination Statement, as indicated above. 9

In addition, the TECWG Chairperson (or Vice-Chairperson) will update the E&V
Team on the status of various related technical efforts at the quarterly E&V
meetings. These briefings will adhere to the following format

NAMin u" KELATtu EFFORT/ORGANIZATION

PROGRAM MANAGER (ADDRESS/PHONE)

PROGRESS STATEMENT (SIGNIFICANT EVENTS/MILESTONES) SINCE LAST UPDATE

DATE

D-9

7 e

28 August 1984

4. IDENTIFICATION!ELABORATION OF RELATED TECHNICAL EFFORTS

The following technical efforts/organizations have been identified as being
related to the E&V Task, and are elaborated in the following paragraphs.

4.1 Ada C31 Test and Evaluation

4.1.1 Purpose

The purpose of this effort is to test and evaluate the effectiveness of using

an Integrated Ada programming environment in an Air Force command, control, and
intelligence (C31) system software development project. Areas to be evaluated

include thie use of Ada as a programming design language, documentation, the

quality and quantity of the code produced, and compiler performance and

productivity. In order to determine the effectiveness of Ada, the software for 0
a selected Air Force system acquisition will be implemented in Ada as a parallel

effort.

4.1.2 Relationship to the E&V Task

The results of this effort will be a technical report describing the results 0

of the test and evaluation. The results of this effort may aid in the
development of requirements and criteria for the evaluation and validation of
APSEs.

4.1.3 Benefits to the E&V Task

The information gained as a result of this effort may assist the E&V Task in

the development of APSE evaluation and validation requirements and criteria.

4.1.4 Benefits to the Related Effort/Organization .

Any requirements and criteria for the evaluation of compilers developed before

this contract is awarded will aid in the evaluation of the AlE Ada compiler.

4.1.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

D-10

..- - .

28 August 1984 S

4.1.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

6
4.1.7 Required Level of Coordination

At present, Elizabeth Kean is an active member of the E&V Team, and will
assist in the coordination of this effort and the E&V Task.

4.1.8 Resolution of Issues

Issues identified within the E&V Task will be handled within the E&V Task.
Issues identified within the Ada C31 Test and Evaluation effort will be resolved
through the RADC chain of command, up to and including the AJPO.

0

4.1.9 Focal Point

The focal point is indicated below

S

Elizabeth Kean

Rome Air Development Center

Commercial : (315) 330-4325 5

Autovon 587-4325

4.2 Ada Integrated Environment 4i

4.2.1 Purpose

The purpose of this Air Force-directed effort is to design and develop a
Minimal Ada Programming Support Environment (MAPSE) including a state-of-the-art
Ada compiler. The Ada compiler will be developed for rehosting and retargeting
to a number of computers. The MAPSE will also consist of software tools and -
aids to assist programmers and project managers in the development of Ada
software. Procedures for rehosting/retargeting the compiler and the MAPSE will
be developed under this effort.

V-l9-

D- 11

.°-_o ~~~~~~~~~~~~~~~~~.o..,.'..o . o.•. .'°~... .,=-"......• .,-. ,

28 August 1984 0

4.2.2 Relationship to the E&V Task

The product of this effort, a Minimal APSE, may eventually be evaluated and

validated using the requirements and criteria developed under the E&V Task. 0

4.2.3 Benefits to the E&V Task

The AIE is the Air Force's implementation of a Minimal APSE. The AIE can be '
used as an aid in determining the requirements and criteria for evaluating and
validating future APSEs.

4.2.4 Benefits to the Related Effort/Organization

The E&V technology developed under the E&V Task will aid in the assessment of
future software tools to be incorporated in the ATE. The CAIS will eventually
be implemented on the ATE. The CAIS and the CAIS validation capability will
provide standardization of interfaces and a method for validating the
implemented interfaces.

4.2.5 Impact on E&V Task Schedules 0

No schedule impacts are currently identified.

4.2.6 Impact on Related Effort/Organization Schedules

The CAIS will eventually be implemented on the AIE, therefore, the CAIS
validation schedule may impact the ATE effort.

4.2.7 Required Level of Coordination -

At present, Elizabeth Kean is an active member of the E&V Team and a technical
evaluator on the ATE effort, and will provide coordination between this effort
and the E&V Task.

4.2.8 Resolution of Issues

Issues identified within the E&V Task will be handled within the E&V Task.
Issues identified within the ATE effort will be resolved through the Rome Air
Development Center (RADC) chain of command, up to and including the AJPO.

D-.12

28 August 1984

4.2.9 Focal Point

The focal point is indicated below

Donald Mark

Rome Air Development Center

Commercial : (315) 330-3398

Autovon : 587-3398

4.3 Ada Joint Program Office

4.3.1 Purpose

The purpose ,f the AJPO, which was established on 12 December 1980 by the
Under Secretary of Defense for Research and Engineering, is to manage the DoD's
effort to implement, introduce and provide life-cycle support for Ada. The AJPO

must ensure the implementation and maintenance of Ada as a consistent,
unambiguous standard recognized by the DoD and also by the widest possible
community. The AJPO must ensure the smooth introduction and acceptance of Ada
in the DoD as early as possible, consistent with the needs of individual
components. The AJPO must ensure the provision of life-cycle support for Ada
through the deveiopment of a robust Ada Programming Support Environment (APSE)

*" to improve productivity both in development and in continued evolution.

4.3.2 Rulationship to the Z&V Task

The AJPO is the sponsor of the E&V Task. The status of the E&V Task is
briefed to the AJPO at the quarterly Tri-Service review meetings.

4.3.3 Benefits to the E&V Task

The AJPO oversees all of the E&V Task activities and provides managerial ,
direction and funding to the E&V Task as necessary.

D-19

-.. D 1 . .

.

.

28 August 1984 -0

4.3.4 Benefits to the Related Effort/Organization

The development of the E&V technology by the E&V Task supports the AJPO

objective of improving the productivity in development and continued evolution

of APSEs.

4.3.5 Impact on Z&V Task Schedules

No sch..dule impacts are currently identified.

4.3.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.3.7 Required Level of Coordination

The AJPO focal point (LCDR Brian Schaar) attends E&V Team meetings and is on

the distribution list for all E&V Team MILNET communication. In addition, the

E&V Team Chairperson (Virginia Castor) is required to brief the AJPO on the

status of the E&V Task at quarterly Ada Tri-Service Reviews. S

*: 4.3.8 Resolution of Issues

All such issues should be brought to the attention of the AJPO by the E&V Team

Chairperson. The AJPO has final authority in the resolution of such issues.

4.3.9 Focal Point

* The focal point is indicated below

LCDR Brian Schaar

Ada Joint Program Office

RM 3D139 (400A/N DR)

The Pentagon

Washington D.C. 20301

Commercial (202) 694-0212

Autovon 224-0212

D-14

S

28 August 1984 -

4.4 Ada Language System

4.4.1 Purpose

The Ada Language System (ALS) is under the direction of the U.S. Army. The

purpose of this effort is to develop an APSE on the VAX/VMS 11/780 with a

MIL-STD-1815A host compiler targeted to the VAX. Other targets include the

Military Computer Family (MCF) Nebula instruction set architecture (ISA), and
the InLel 8086.

4.4.2 Relationship to the E&V Task

The technology developed through the E&V Task can be applied to the ALS

development.

4.4.3 Benefits to the E&V Task

The ALS represents the Army's implementation of an APSE. The ALS can be used

as an example in determining the criteria for performing evaluation and

validation on future APSEs. 0

4.4.4 Benefits to the Related Effort/Organization

The technology which is developed by the E&V Team will provide input to the

development of the ALS. Also, the CAIS, which is currently being developed by

the YTT/VUTT. l ,ill he used with the ALS at a future time.

4.4.5 Impact on E&V Task Schedules -

No schedule impacts are currently identified. S

4.4.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.4.7 Required Level of Coordination

Coordination will be with the Army's ALS maintenance personnel. In addition,

Mr James Williamson is currently participating as the Air Force representative

on the Tri-Service ALS testing team. S

D-15

28 August 1984 0

4.4.8 Resolution of Issues

All such issues should be brought to the attention of the AJPO by the E&V Team
Chairperson. The AJPO shall be responsible for informing the appropriate Army -

personnel and seeking resolution of these issues. 0

4.4.9 Focal Point

The focal point is indicated below

Dennis Turner

DRSEL-TCS-Ada

U.S. Army/CECUM, Ft. Monmouth, New Jersey 07703

Commercial : (210) 544-4149

Autovon 995-4149

4.5 Ada Test and Verification System

4.5.1 Purpose

The purpose of this effort is to design an Ada Test and Verification System
(ATVS) which can be implemented as a set of computer-based software tools to"-"* "
improve the reliability and maintainability of Ada software systems. It is
intended that this system will be applied during the coding, testing, -_

verification, and error detection/correction phases of software development.
This effort will begin with a study to determine the most advanced techniques
and capabilities to be included in the design. The ATVS will then be designed
as an integral component of an APSE. As a minimum, the ATVS shall be designed
for use with both the Air Force's AlE and the Army's ALS.

4.5.2 Relationship to the E&V Task

The ATVS will be a portable software tool residing on an APSE. Thus, the
technology developed by the E&V Task can be applied.

D-16

S /j.

...

28 August 1984 0

4.5.3 Benefits to the E&V Task

If the CAIS is available at the time of implementation, it will be used as the
interface.

4.5.4 Benefits to the Related Effort/Organization

The requirements and criteria for the evaluation and validation of APSEs may
result from V e ialtial analysis study and the resulting implementation.

4.5.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.5#6 Impact on Related Effort/Organization Schedules

The development of the CAIS may impact the schedules of this effort.

4.5.7 Required Level of Coordination •

At present, Elizabeth Kean will relay any information to and from the RADC -

focal point.

4.5.8 Resolution of Issues

Isbues ide.tiified within the E&V Task will be handled within the E&V Task.
Issues identified within the ATVS effort will be resolved through the RADC chain
of command.

" 4.5.9 Focal Point

The focal point is indicated below

Richard Evans

Rome Air Development Center

Commercial : (315) 330-3398

Autovon 587-3398

D-17

-S •.

28 August 1984

4.6 Ada Validation Organization

4.6.1 Purpose "
0

The Ada Validation Organization (AVO) is sponsored by the AJPO. Its purpose

is to ensure that developers of Ada compilers have correctly implemented the
standard Ada language (ANSI/MIL-STD-1815A-1983).

4.6.2 Relationship to the E&V Task

The AVO has been responsible for the development and implementation of an Ada
Compiler Validation Capability (ACVC) in order to determine conformance of Ada

compilers to the standard Ada language. The ACVC provides a capability to

validate one particular tool within an APSE and, as such, will be incorporated
within the E&V technology developed by the E&V Team.

4,6.3 Benefits to the E&V Task

The AVO has established formal procedures for validating Ada compilers and
mechanisms by which the validation procedures are executed. The expertise

gained through the development and implementation of these procedures will be
beneficial to the E&V Team as it begins to establish recommendations for formal

procedures for the implementation of E&V technology.

4.6.4 Benefits to the Related Effort/Organization 0

The E&V Task is responsible for developing evaluation capabilities, as well as
validation capabilities. The determination of evaluation criteria for the

assessment of compilers is but one of the many activities being performed by the

E&V Task. The Ada compiler evaluation capability will be of particular benefit
to the AVO.

4.6.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.6.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

- D1

D-.- 18

. .

. % -. ,. . - % °. % .. " .'-° _.

28 August 1984 0

4.6.7 Required Level of Coordination

The AVO Director (Thomas Probert) from the Institute for Defense Analyses

(IDA) is on the distribution list to receive all E&V Team MILNET communication.

4.6.8 Resolution of Issues

Issaies jf concern should be coordinated through the E&V Team Chairperson and

the IDA E&V focal point (John Kramer), and raised to the AJPO level if necessary
for resolution.

4.6.9 Focal Point

The focal point is indicated below

Thomas Probert

Institute for Defense Analyses
S

1801 N. Beauregard St.

Alexandria, Virginia 22311

Commercial : (703) 845-2517

Alrnvr-,n ,q-194R (ewt. 2517)

4.7 Ada-1750A Runtime

4.7.1 Purpose

The Ada-1750A Runtime effort is under the direction of the Air Force. The

purpose of the effort is to define an initial runtime model using as much
industry participation as possible. 0

4.7.2 Relationship to the E&V Task

Part of the Ada compiler not now validated or evaluated by current techniques

is the runtime executive; the out-of-line executable code that does heap

management, directs hardware interrupts to Ada task ACCEPT entries, and similar
book-keeping chores.

D-.19

-. 9

28 August 1984 0

4.7.3 Benefits to the E&V Task

Since the model is Air Force owned and open to inspection, the E&V Team can
determine if validating one particular runtime model is practicable, or whether
evaluation only is feasible. 0

4.7.4 Benefits to the Related Effort/Organization

Since the CAIS may eventually incorporate a runtime module, validation will
then become mandatory, but some evaluation will still be required. 0

4.7.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.7.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.7.7 Required Level of Coordination

At present, Mr Nelson Estes is a member of the E&V Team, as well as program
manager of the Ada-1750A Runtime effort.

4.7.8 Resolution of Issues

Issues identified related to the Ada-1750A runtime model will be handled by
the Air Force Ada-1750A Program Manager.

4.7.9 Focal Point

The focal point for the Ada-1750A Runtime effort is indicated below

Nelson Estes

Embedded Computer Standardization Program Office

ASD-AFALC/AXTS

Wright-Patterson AFB, Ohio 45433

Commercial (513) 255-5945

Autovon 785-5945

D-20

° . ,, - ... - . . o - o, , .' . .' ". . o " ".. f . -. ,O.. .° . - •. . . . o

28 August 1984 0

MILNET ESTESN@WPAFB-JALCF

4.8 Air Force Computer Resource Management Technology 0

4.8.1 Purpose

The over-all objective of the Air Force Computer Resource Management --
Technology Program Element (64740F) effort is to apply advances in computer S
resource management technology to the development and acquisition of Air Force
and other military systems.

4.8.2 Relationship to the E&V Task

This program element (PE) supports the development and application of
techniques to increase the performance and reduce the costs of mission-critical
computer resources. It includes proposed programs from several Air Force
Systems Command Product Divisions to develop criteria for evaluating Ada
compilers. In addition, this PE includes programs which plan for and support
the introduction of the Ada programming language. 0

4.8.3 Benefits to the E&V Task

Various 64740F-sponsored programs may result in evaluation criteria for Ada
compilers and other Ada tools that may be useful to the E&V Task. Also, new
software tools developed under 64740F may expand the APSE functionality
definition.

4.8.4 Benefits to the Related Effort/Organization

One project within the PE is concerned with software acquisition standards and
mechanisms to improve the acquisition and support of computer resources. The
EbV criteria developed by the E&V Task will directly contribute to the goal of . "
this project.

4.8.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

D-21

-AN Sab-m

28 August 1984 S

4.8.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.8.7 Required Level of Coordination

At present, Chris Anderson is an active member of the E&V Team, and the

Program Planning Group (PPG) of 64740F.

4.8.8 Resolution of Issues

The focal point for coordination will assist in resolving any issues that

arise which may adversely affect either effort.

4.8.9 Focal Point

The focal point is indicated below

William Letendre

ESD/ALEE

Hanscom Air Force Base, Massachusetts 01731

Autovon 478-5113

4.9 Common Ada Missile Packages .

4.9.1 Purpose

The objective of the Common Ada ,Missile Packages (CAMP) program is to explore
the feasibility of developing reusable software in Ada for armament S
applications, and an associated parts composition system. CAMP is sponsored by

AFATL, the Air Force Munition and Ordnance Program Element (64602F), the STARS

programn, and the AJPO.

1)-22

. -S

28 August 1984

4.9.2 Relationship to the E&V Task

The product of this effort, APSE library components and associated parts
composition system, may eventually be evaluated using the requirements and
crilt!rt: dcveloped under the E&V Task.

4.9.3 Benefits to the E&V Task

The reusable software components and associated parts composition system
developed under the CAMP program, will result in new technology which may expand
the requirements and criteria for evaluating future APSEs. In addition, the
common armament functions identified by the CAMP program may serve as a basis
for developing armament-specific compiler benchmarks for Ada compiler
evaluation.

4.9.4 Benefits to the Related Effort/Organization

The CAIS and CAIS Validation Capability will provide standard interfaces for
future APSE libraries and supporting parts composition systems, such as are
being developed by the CAMP effort.

4.9.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.9.6 Impact on Related Effort/Organization Schedules

The following E&V Task schedules may impact the schedules of the CAMP effort.

S

CAIS Validation Capability contract start - 2nd Quarter FY85

Draft CVC - Ist Quarter FY86

Version 1 CVC - 1st Quarter FY86

4.9.7 Required Level of Coordination

At present, Chris Anderson is an active member of the E&V Team, and the CAMP
Program Manager.

D-23

28 August 1984

4.9.8 Resolution of Issues

Issues identified related to the E&V Task will be addressed within the E&V
Task. Issues identified related to the CAMP program will be handled by the
AFATL CAJMP Program Mnager.

4.9.9 Focal Point

The focal point is indicated below

Chris Anderson

Air Force Armament Laboratory/DLMM

Eglin Air Force Base, Florida 32542

Commercial : (904) 882-2961

Autovon : 872-2961

4.10 Johnson Space Center Ada Project

4.10.1 Purpose

The Johnson Space Center (JSC) Testing and Analysis of DoD Ada Language
Products for NASA (JSC Ada Project) effort is sponsored by National Aeronautics
and Space Administration (NASA) Headquarters. The purpose of this effort is to
perform testing and analyses of Ada software technology products being produced
by the DoD, evaluate their applicability to future NASA projects (such as the
Space Station) and develop a plan for their implementation in future NASA flight
systems as a standard. The JSC Ada Project was established as a result of the
Memorandum of Agreement signed in June, 1983 by Dr. Edith Martin, Deputy Under
Secretary of Defense for Research and Development Technology, and Dr. Jack
Kerrebrock, NASA Associate Administrator for Aeronautics and Space Technology.
This agreement establishes NASA/DoD cooperation in the DoD STARS Program, and
recognizes APSE Beta Testing at the JSC and the University of Houston (at Clear
Lake City) as part of that cooperation.

D-24

28 August 1984 0

4.10.2 Relationship to the E&V Task

Both tasks have a common goal of developing technology for use in evaluating
APSEs. But in addition to using technology provided by the E&V Task, the JSC
Ada Project will also develop specific evaluation criteria and tests based upon 6
technology and tools used in current NASA spaceflight systems (e.g., the HAL/S
programming support system curreotly used as a NASA standard).

4.10.3 Benefits to the E&V Task

The JSC Ada Project will primarily focus on use of APSEs in the development of
prototype applications. Data and information from this activity will be used to
develop standards and criteria later used in evaluating APSEs for NASA. This
work, in conjunction with other studies and analyses at JSC, will identify
additional APSE features and tools needed for support of NASA spaceflight
applications projects. Information provided by the JSC Ada project should S
assist the E&V Task in its development of standards and criteria for use in
evaluation of APSEs.

4.10.4 Benefits to the Related Effort/Organization

The technology developed by the E&V Task will be utilized in the JSC Ada
Project to assist in evaluating APSEs for NASA.

4.10.5 Impact on E&V Task Schedules

No schedule i~bpicts are currently identified.

4.10.6 Impact on Related Effort/Organization Schedules

An impact to the APSE evaluation criteria may occur.

#,10,7 Required Level of Coordination

At present, Mr. Terry D. Humphrey is an active member of the E&V Team, and is
also the Steering Group Subcommittee Chairman for prototype applications S
development within the JSC Ada Project.

4.10.8 Resolution of Issues

Such issues should initially be addressed within the respective task in which •
they arise (i.e., the E&V Task or JSC Ada Project). Recommendations should then
be developed within that task to resolve such issues. The issues and associated
recommendations, should then be presented to the other task leader. Task -...-

leaders should work together to obtain resolution. If resolution is
unattainable at that level, both task leaders should elevate the issues for

D-25

_0

28 August 1984 0

review by STARS' personnel.

4.10.9 Focal Point 2
The focal point is indicated below

Jack Garman

Johnson Space Center

Mail Code FD

Houston, Texas 77058

(713) 483-4788

4.11 Joint Service Software Engineering Environment

4.11.1 Purpose

The Joint Service Software Engineering Environment (JSSEE) is sponsored by the
Software Technology for Adaptable Reliable Sy-tems (STARS) Program. A software
engineering environment (SEE) is an integrated system that supports
mission-cricicai c(,WpuLer software over the entire life-cycle, from the initial
stateeaL uf the requirements of the software to the support of the operational
software. The purpose of the JSSEE Task Group, which is comprised of selected
representatives from the DoD software technical community, is to define and
provide a preliminary design of the Joint Service SEE. .

4.11.2 Relationship to the E&V Task

One of the goals of the JSSEE Task is to produce a high quality Joint Service
SEE. As such, principles which will guide the JSSEE Team include emphasis on
production quality tools which reflect human engineering features, and which 0
encourage good software engineering practices. The SEE and E&V Tasks will
address common areas of interest and can benefit from one another in the
research/technology common to both.

D-26

S

." " -" -. ' ". . ." . . • - -. . o. -,. -. , ,- • . '. - ° - - . , - , -"- "

28 August 1984

4.11.3 Reiefits to the E&V Task

The JSSEE Task will result in the definition and preliminary design of a
JSSEE, ba3ed upon careful review of life-cycle methodologies, tool
functlon .l ee, etc. The rationale which is used by the JSSEE Team to design
the JSSEE, will provide useful requirements criteria to be addressed by the E&V
Team.

4.11.4 Benefits to the Related Effort/Organization -

The evaluation technology developed via the E&V Task will enable the JSSEE
Team to assess the tools being incorporated within the JSSEE. The validation
technology developed via the E&V Task will enable the JSSEE Team to determine
JSSEE corpliance with the Common APSE Interface Set (CAIS), which is currently
under development by the KIT/KITIA.

4.11.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.11.6 Impact on Related Effort/Organization Schedules

The following E&V Task schedules, with respect to the CAIS Validation

Capability (CVC), may impact the JSSEE schedules.

ConLract start - 2nd Quarter FY85

Draft CVC - 1st Quarter FY86

Version I CVC - Ist Quarter FY86

Version 2 CVC - 4th Quarter FY86

* Version 3 CVC - 4th Quarter FY 87

Version 4 CVC - 4th Quarter FY88

4.11.7 Required Level of Coordination

At present, Ms. Ronnie Martin is an active member of both the E&V Team and the 0
JSSEE Team. In addition, E&V Team members John Kramer and Virginia Castor, are
on the distribution list for all JSSEE MILNET communications.

bS

D-27

S~.

28 August 1984 0

4.11.8 Resolution of Issues

Once such issues are identified, they should initially be addressed within the - ".
specific task in which the issue arose (i.e., E&V or JSSEE). Recommendations
should then he developed within that task to resolve such issues. The issues, "•

and associated recommendations, should then be presented to the other task
leader. Task leaders should work together to obtain resolution. If resolution
is unattainable at that level, both task leaders should elevate the issues for "
review by STARS and AJPO personnel. -

4.11.9 Focal Point

The focal point is indicated below

Hank Steubing

Naval Air Development Center

Warminster, Pennsylvania 18974

Commercial : (215) 441-2314

Autovon 441-2314

4.12 KAPSE interface Team/KAPSE Interface Team from Industry and Academia

4.12.1 Purpose

The Kernel Ada Programming Support Environment (KAPSE) Interface Team (KIT) is 4-1
a Navy-led organization sponsored by the Ada Joint Program Office (AJPO). Both
the KIT and its companion Industry-Academia Team (KITIA), were formed by a .
Memorandum of Agreement (MOA) signed by the Assistant Secretary of each of the
Services, and the Under Secretary of Defense in early 1982. The KITIA consists - " . •
of volunteer representatives from industry and universities who provide
technical expertise to the KIT. Their purpose is to contribute to the S
achievement of interoperability of applications databases and transportability
of software development tools ("I&T"). In order to accomplish this objective,
the KIT/KITIA is defining a Common APSE Interface Set (CAIS) to which all
Ada-related tools can be written, thus assuring the ability to share tools and
databases between conforming APSEs.

D- 28

* * * - . * , *.-*.. *

.

28 August 1984 0

4.12.2 Relationship to the E&V Task

The CAIS will become a MIL-STD in 1985 with revisions anticipated in the

following years. As such, a CAIS Validation Capability (CVC) must be developed .
to .xnobhl detrmination of conformance to the MIL-STD by APSEs which implement _

the CAIS. One of the goals of the E&V Task is to develop the CVC.

4.12.3 Benefits to the E&V Task

In addition to the definition of the CAIS, the KIT/KITIA activities of 0

developing requirements and criteria, improving upon the STONEMAN definition of

an APSE, providing APSE-related terminology and definitions, examining the issue
of determining compliance of the CAIS to the original requirements, etc., will

provide useful inputs and obviate the need for repetitive activities by the E&V
Task. In addition, E&V Tools developed in the future should be portable across

CAIS implementations.

4.12.4 Benefits to the Related Effort/Organization

The process of developing a CAIS Validation Capability in parallel with the

definition of the CAIS will provide to the KIT/KITIA information related to 0

problems encountered by the E&V Task in understanding CAIS semantics, such as
ambiguities and inconsistencies, thus enabling the KIT/KITIA to modify the CAIS
definition accordingly. The E&V Task will also help guide the KIT/KITIA in

their choice of how to express the semantics and the specifications themselves,

based upon experience with what can be validated best.

4.12.5 Impact on E&V Task Schedules

The following KIT/KITIA schedules may potentially impact the E&V Task

schedules.

CAIS MIL-STD Version 1 - January 1985

CAIS Draft Version 2 - January 1986 0

CAIS MIL-STD Version 2 - January 1987

D-29

• , °

ii i.-i . i~ iili .- . i- . ". *. , .. , ,l . -i-iii.i-ii .ii~ i.-i iiii.:'~ ~ -~ ri~ l."- i. ,.,i l. "''i .1 .-- i~

28 August 1984 0

4.12.6 Impact on Related Effort/Organization Schedules

The following E&V Task schedules may impact the schedules of the KIT/KlTLA.

CVC contract start - 2nd Quarter of FY85

CVC Version 1 -1st Quarter of FY86

CVC Version 2 - 4th Quarter of FY86

CVC Version 3 - 4th Quarter of FY87

CVC Version 4 - 4th Quarter of FY88

4.12.7 Required Level of Coordination

There are several E&V Team members who are also members of the KIT/KITIA.
Areas of common interest are coordinated through these common representatives.
One of these common representatives, John Kramer, is a member of the KIT/KITIA S
CAISWG as well as a member of the E&V Team CAISWG, and issues specific to CAIS
will be coordinated through him.

4.12.8 Resolution of Issues

Issues of concern should be coordinated through the common E&V-KIT/KITIA -= -

representatives and raised to the level of Team Leaders if necessary for - -
resolution.

4.12.9 Focal Point

The focal point for the KIT/KITIA is indicated below

Patricia Oberndorf S

Naval Ocean Systems Center (NOSC)

Code 8322

San Diego, California 92152 9

Commercial (619) 225-6682

Autovon 933-6682

D- 30

9

. ..

28 August 1984 0

4.13 Methodology Coordinating Team

4.13.1 Purpose

The purpose of the AJPO-sponsored Methodology Coordinating Team is to expand

the scope and depth of the Methodman I document produced by Professors Peter

Freeman and Anthony Wasserman. It is intended to define the basis for further

extension of this work, and provide a preliminary technology for selecting a

life-cycle methodology for the preparation and modification of Ada-based
software systems. 0

4.13.2 Relationship to the E&V Task

As technology is developed to evaluate life-cycle software methodologies, it

should indicate which methodologies are better than others, and encourage tool S

set developers to implement those methodologies. At some point, the evaluation

of the APSE should determine what methodologies are supported, evaluate them,

and indicate to what extent the tool set supports them.

4,13.3 Benefits to the E&V Task 0

The E&V Task will benefit from the definition of technology to evaluate

methodologies implemented on an APSE. Measures could possibly be developed
which could be used on E&V tools and tool sets.

4.13.4 Benefits to the Related Effort/Organization

Even though a methodology is evaluated abstractly as good, bad, or somewhere

in between, the tool set implementing that methodology can severely impact its

usefulness. The E&V technology to evaluate tools and tool sets, should help in

determining this aspect of the problem. Also, the E&V technology should assist ".

in characterizing, evaluating, and selecting methodologies, and provide measures
to accomplish this,

4.13.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.13.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified. 0

"'- .

D- 31

• ., " . :'- -'.'. '-.'- -_ .- •-,'.. "i' . ". -," ,' '. - .. " .'..-.. ...- .. .-.-.... .-. ".. ...-.. ..-.. .. .-...-.. ...-.. ". .-.. .".. . .

28 August 1984 0

4.13.7 Required Level of Coordination

At this time, John Kramer is an observer member of the Methodology
Coordinating Team, and a reviewer of their plans and documents. At a later
time, as the E&V Team begins to develop evaluation criteria concerning the
aspects of life-cycle tool sets, at least one joint member would be appropriate.
Periodic briefings by each team to the other would be useful.

4.13.8 Resolution of Issues

Issues should be identified, properly specified, and discussed within the team
in which the issue originated. The issue should then be forwarded via the
MILNET to the chairperson of the other team. The two chairpersons should
determine how to address and resolve the issue.

4.13.9 Focal Point

The focal point is indicated below

Peter Fonash

Department of the Army

DRCDE-SB

5001 Fi, nhower Av~nue

Alexandria, Virginia 22333

Commercial (703) 274-9314

4.14 Prototype Advanced Ada Programming Support Environment

4.14.1 Purpose

The purpose of the Prototype Advanced Ada Programming Support Environment
(PA-APSE) project is to combine research into advanced APSE features, with
support for the KAPSE Interface Team (KIT).

D-32

S. _

28 August 1984 S

4.14.2 Relacionship to the E&V Task

The E&V Task is concerned with developing criteria for judging the quality and

value o(APSEs. The PA-APSE project investigates potential APSE features which -

may he fnin. to he required or desirable, and so included in the features

considered by E&V.

4.14.3 Benefits to the E&V Task

The PA-APSE project will identify APSE features of potential interest to the
E&V Task, and the qualities of those features which are desirable.

4.14.4 Benefits to the Related Effort/Organization

The E.&V Task may identify potential APSE features which should be further

inve=.tigatted by tile PA-APSE project.

4.14.5 Impact on E&V Task Schedules

No schedule impacts are currently identified. S

4.14.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.14.7 Required Level of Coordination

Mutual information flow is recommended. This can be provided via the
communication paths already established between the KIT and the E&V Team.

4.14.8 Resolution of Issues

Such issues should be brought to the attention of the E&V Chairperson, and the

PA-APSE contract monitor.

4.14.9 Focal Point

The focal points are indicated below

Frank Belz (Project Manager at TRW)

TRW DSG

...........

.-. '... :

D- 33 i:li:: :

%t

28 August 1984

One± Space Park

R2/1127

Redondo Beach, California 92078 S

Commercial (213) 535-1623

Patrici.i Oberadorf (Contract Monitor)

Code 8322

NOSC

San Diego, California 92152

CoTmnerial : (619) 225-6682/7401

4.15 Software Engineering Automation for Tactical Embedded Computer Systems

4.15.1 Purpose

The Software Engineering Automation for Tactical Embedded Computer Systems
(SEATECS) project is an internal Naval Ocean Systems Center (NOSC) effort which .

conducts research into environment construction issues. A set of Top Level S
Requreieiits has been developed, and a proposed environment architecture will
soon be published. The project also includes an experimental environment which
is used to conduct investigations into various proposed environment features.
Although SEATECS is not exclusively concerned with APSEs, all of the SEATECS
work is applicable to APSEs. .

4.15.2 Relationship to the E&V Task

SEATECS is involved in establishing and investigating potential environment
features. Such features could be of interest to the E&V Task. In addition,
SEATECS seeks to resolve various issues in environment construction which could 5

be of importance to the E&V Task.

4.15.3 Benefits to the E&V Task

SEATECS will identify various aspects of environments which are important to a

potential user, but which are often over-looked in current approaches to
environment construction.

D-34

S

28 August 1984 0

4.15.4 Benefits to the Related Effort/Organization

The E&V Task may identify issues which are appropriate for investigation using
the SEA1ECS approach.

4.15.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.15.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.15.7 Required Level of Coordination 0

Mutual information flow is recommended. This can be provided via the
communication paths already established between NOSC and the E&V Team.

4.15.8 Resolution of Issues 0

Such issues should be brought to the attention of the E&V Chairperson, and the
SEATECS project manager, Howard Harvey. The KIT Chairperson, Patricia
Oberndorf, will act as liaison as required.

4.15.9 Focal Point

The focal point is indicated below

Howard Harvey

Code 8322

NOSC

San Diego, California 92152

Commercial (619) 225-6682/7401

D-35

i. 01

P 28 August 1984

4.16 STARS Human Resources And Engineering Task Area

4.16.1 Purpose

This STARS-sponsored task represents one of the six task areas of the Software
Technology for Adaptable Reliable Systems (STARS) program. It focuses on
enhancing the skill level of personnel involved in the acquisition, development,
and support of mission-critical systems. It also focuses on enhancing the
usability of these systems, as well as the usability of software environments.

4.16.2 Relationship to the E&V Task

One of the characteristics to be evaluated by the E&V Task is APSE usability.
One of the major concerns of the Human Resources and Engineering Task Area is
the design of highly usable systems. S

4.16.3 Benefits to the E&V Task

The Human Resources and Engineering Task Area is focusing on steps that can be
taken to improve the usability of future environments, while the E&V Task is 0
focusing on developing the technology necessary to evaluate current and future
environments. As a consequence of the STARS work, a greater understanding of
the characteristics leading to the design of highly usable systems should be
gained. This should, in turn, support an approach to evaluating usability which
is based on an analysis of these characteristics (as compared to an approach
wLich is purely empirical). 0

4.16.4 Benefits to the Related Effort/Organization

Progress within the Human Resources and Engineering Task Area depends on an
increased understanding of the characteristics leading to highly usable systems 0
(including APSEs). It is anticipated that the E&V Task will lead to the
collection of empirical data that will be useful in identifying those
characteristics.

4.16.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

13--36

7.

28 August 1984

4.16.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.16.7 Required Level of Coordination

Dr. Elizabeth Bailey is currently serving as a technical consultant to the E&V
Team, as well ag to the STARS program. She was responsible for drafting the
March 1983 technical plan for the Human Engineering Task Area (which has since
been merged with the Human Resources Task Area).

4.16.8 Resolution of Issues

Issues should be addressed via coordination between the STARS Joint Program
Office and the E&V Team.

4.16.9 Focal Point

The focal point is indicated below

Carol Morgan

U.S. Navy Acting Program Manager

STARS Joint Proeram Office
0

400 Army Navy Drive

Arlington, Virginia 22202

Commercial (703) 694-0210

, 4.17 STARS Measurement Task Area oS

4.17.1 Purpose

* This task, which is sponsored by the STARS program, is concerned with the

development and use of measures to support evaluations and comparisons of
software products, and of the processes associated with software development and

* support. The strategy for the Measurement Area includes establishing success 0
criteria for the other task areas, performing cost/benefit analyses of various
opportunities, collecting baseline data against which to measure progress,

. instrumenting automated support environments for data collection, and developing

techniques for testing hypotheses and models related to software development and

D-37

.... . ..-

28 August 1984 0

in-service support. Thus, this area is important not only for improving DoD
programs, but also for assessing how well the STARS program is meeting its
objectives.

4.17.2 Relationship to the E&V Task

The development of quantitative indicies to support comparision is key to both
efforts. The Measorement Task Area of STARS is concerned with a broader area
than the E&V Task.

4.17.3 Benefits to the E&V Task

One con-ern of the Measurement Task Area is the instrumentation of automated
environments for data collection. Progress in this area will directly benefit
the E&V Task. •

4.17.4 Benefits to the Related Effort/Organization

The E&V Task is confronted with many of the same issues stemming from the
effort to measure APSE characteristics of importance to potential users. S
Success in the E&V Task will require the development of objective, reliable
procedures for measuring these characteristics, some of which (e.g.,
"usability") are difficult to pin down precisely. Many of the lessons learned,
and measurement procedures resulting from the E&V Task will have direct
relevance to thp Measurement Task Area.

4.17.5 impact on E&V Task Schedules

No schedule impacts are currently identified.

4.17.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.17.7 Required Level of Coordination

Dr. Elizabeth Bailey is currrently serving as a technical consultant to the
E&V Team, as well as to the STARS program. She served as a reviewer for the
March 1983 technical plan for the Measurement Task Area.

1)- 38

.- ' ' . "-" ". - " - -. -i -. -i .i - . .i. - "" a " -- - ' - . -. i.. i . .- .

28 August 1984 •

4.17.8 Resolution of Issues

Issues should be addressed via coordination between the STARS Joint Program
Office aad the E&V Team.

4.17.9 Focal Point -.

The focal point is indicated below

Carol Morgan

U.S. Navy Acting Program Manager

STARS Joint Program Office S

400 Army Navy Drive

Arlington, Virginia 22202

Commercial (703) 694-0210 0

4.18 STEP

4.18.i Purpose

The Software Test and Evaluation Project (STEP), Phases III and IV, is
sponsored by the Director Defense Test and Evaluation (DDT&E) and the STARS
program. The purpose of STEP is to develop and implement new DoD guidance and •

policy for the test and evaluation of computer software for mission-critical
applications. Principal subgoals include the stimulation of tool development,

* the support of policy development, and the identification of research issues and

directions in the area of software testing. Principal recommendations from the

previous STEP phases are intended to establish a chain of test planning, -

documentation, and evaluation criteria which starts at the most general planning S
document (the Test and Evaluation Master Plan, or TEMP) and proceeds through the

plans and procedures implemented by the Project Offices, development
organizations, and independent test organizations. Phases III and IV of STEP,

which are currently underway, are designed to define the technology and provide
implementation support for these recommendations.

D-39

- - . " . - . 4 - . - . . * * .'

28 August 1984 0

4.18.2 Relationship to the E&V Task

Tiere are at least three areas in which STEP and the E&V Task are related : a)
STEP is tasked to develop new guidance statements, as needed, for software test -
and evaluation (T&E), as well as the necessary implementation methods. Work in
this area is intended to address the policy-related issues so that the
technology receives the support from above that is needed to put it into
practice. This would include any modifications to DoDD 5000.3 and attendant
Service rtegulations, etc., which would require TEMPs to report the results of -'

the evaluation and validation of support software; b) STEP is tasked to produce -
T&E management and operating plans, and demonstration and qualification
procedures for the Software Engineering Institute (SEI). The procedures for
inclusion of qualified tools in TEMP specifications and lower-level test plans
will also be defined. These tasks address the technology-related problems
involved in the qualification of software testing tools for DoD use. This is,
in many ways, a subset of the work to develop the E&V technology. In addition,
these tasks include the identification of organizations responsible for the S
application of the technology (e.g., an Independent Evaluation and Validation
(IE&V) organization); and c) STEP is tasked to provide functional requirements
for APSE test environments. The requirements produced will need to be supported
by the E&V technology.

4.18.3 Benefits to the E&V Task

The E&V Task will benefit from STEP's efforts in at least two ways. First of
all, the E&V technology will receive the policy support from above which will
accelerate its use. Secondly, efforts to develop E&V technology for application .
to testing tools should benefit from the qualification procedures developed by 0
STEP.

4.18.4 Benefits to the Related Effort/Organization

The efforts of the E&V Task will allow the insertion of demonstrated risk S
reduction technology into the aLquisition cycle. The qualification procedures
developed by STEP will be elaborated and inserted into an envirorunent where the
standard operating procedures include the evaluation and validation of support
software. Furthermore, the functional requirements for APSE test environments
to be developed by STEP will be supported by a technology which ensures their
implementation.

4.18.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

D-40

~~..

28 August 1984

4.18.6 Iapact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.18.7 Required Level of Coordination

At present, R. J. Martin is serving as STEP's liaison to the E&V Task.
However, if both tasks are to capitalize upon the obvious opportunities for "
mutual benefit, additional mechanisms for increased coordination and support •
should be explored. 0

4.18.8 Resolution of Issues

Once such issues are identified, they should initially be addressed within the
specific task in which the issues arose (i.e., STEP or E&V). Recommendations S
should then be developed within that task to resolve such issues. The issues,
and associated recommendations, should then be presented to the other task.
Task leaders should work together to obtain resolution. If resolution is
unattainable at that level, both task leaders should elevate the issues for
review by DDT&E, STARS, and AJPO personnel, as appropriate.

4.18.9 Focal Point

The DDT&E and STARS focal points, respectively, are indicated below

Charles K. WaLt

Acting Director, Defense Test and Evaluation

Room 3E (1060)

The Pentagon

Washington D.C. 20301

Commercial (202) 69;-7171 5

Dr Robert Mathis

Director, STARS Joint Program Office

Room 3D 139

400 Army Navy Drive

The Pentagon

D- 41

i .

• - ... •. ... • • ,°-.Oo .-......-..-..................-.. '.-.....-.......................".........-".......-................°.°° --..' ,'i ,

28 August 1984 S

Washington D.C. 20310

Autovon : 224-0209

Commercial (703) 694-0209

4.19 Tactical Ada Guidance

4.19.1 Purpose

The purpose of the Tactical Ada Guidance (TAG) program, which is sponsored by ,
the Air Force Armament Laboratory (AFATL) and the Air Force Computer Resource
Management Technology Program Element (64740F), is to demonstrate the use of Ada S
in a real-time armament system. Specifically, the software in the Medium Range
Air-to-Surface Missile (MRASM) Test Instrumentation Controller (TIC) computer is
being redesigned and implemented in Ada.

4.19.2 Relationship to the E&V Task S

One of the by-products of this effort is the identification of Ada compiler J
implementation-dependent features that are particularly desirable for armament
applications. These features may be useful in defining application-specific
metrics for Ada compilers.

S

4.19.3 Benefits to the E&V Task

The TAG program will result in recommendations for application-specific (i.e.,
armament) evaluation criteria for Ada compilers.

4.19.4 Benefits to the Related Effort/Organization

No benefits are identified. The TAG program will terminate in November, 1984,
prior to any E&V technology transition.

4.19.5 Impact on Z&V Task Schedules

No schedule impacts are currently identified.

D-4 2
.

,. • . .
. o

28 August 1984 0

4.19.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4,19.7 Required Level of Coordination

At present, Chris Anderson is an active member of the E&V Team, and the TAG

Program Manager.

4.19.8 Resolution of Issues

Issues identified which relate to the E&V Task will be handled within the E&V

Task. Issues identified which relate to the TAG program will be resolved by the
AFATL TAG Program Manager.

S

4.19.9 Focal Point

The focal point is indicated below

S

Chris Anderson

Air Force Armament Laboratory/DLMM

Eglin Air Force Base, Florida 32542

Gotaiaercial (90'4) 8082-2961

Autovon 872-2961

4.20 Telesoft-Ada Programming Support Environment

4.20.1 Purpose

The purpose of this effort is to design and develop an Ada compiler and target -...

code generators, to be hosted on, and targeted for, a variety of computers
(e.g., IBM 370, VAX, Motorola 68000, and IBM PC).

D-43

%.

28 August 1984

4.20.2 Relationship to the E&V Task

The products of these efforts may eventually be evaluated and validated using
the requirenents and criteria developed by the E&V Task.

S

4.20.3 Benefits to the E&V Task

The Telesoft-Ada products will be analyzed and may provide useful information

for detenni.ing the requirements and criteria for evaluating and validating
future APSEs.

4.20.4 Benefits to the Related Effort/Organization

The technology developed under the E&V Task may assist Telesoft or its users
in identifying APSE features and tools to be incorporated in future Telesoft-Ada
revisloas and releases.

4.20.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.20.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.20.7 Required Level of Coordination

Presently, Mr. Terry Humphrey is an active member of the E&V Team and a
technical evaluator of the Telesoft-Ada effort for the E&V Team and the NASA
Johnson Space Center.

4.20.8 Resolution of Issues

Currently, an issue should be addressed within the task in which it arose.
Additional methods for issue resolution are to be determined.

4.20.9 Focal Point

High-level task coordination is to be determined.

D

I)-44"i'""""

-

28 August 1984 0

4.21 Very High Speed Integrated Circuits

4.21.1 Purpose

The Very high Speed Integrated Circuits (VHSIC) program was initiated in 1975
to meet the present and future DoD needs for complex high speed electronic
systems and subsystems.

4.21.2 Relationship to the E&V Task

One of the major components of the VHSIC program is the Integrated Design
Automation System (IDAS). IDAS is ultimately to provide an integrated system
for the design of VHSIC chips, composed of a set of computer-aided design tools
spanning the entire design hierarchy, from system requirement to layout and
routing, using a common data base to ensure design integrity. Parts of the CAIS
are le.7g propostd as the foundation for IDAS. In addition, the tools developed
will become another set of tools in an APSE which the E&V Team must consider
evalua ti ng.

4.21.3 Benefits to the E&V Task

The E&V Team can observe the IDAS evolution to better understand the role
IDAS-like tool sets will play in future environments, and what is important to
evaluate.

4.21.4 Benefits to the Related Effort/Organization

The E&V technology should be useful to the VHSIC program management when it
comes time to evaluate the various tool sets and individual tools being
proposed.

4.21.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.21.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

D-45

. . . . -

S.-.. j.,. "

28 August 1984 -

4.21.7 Required Level of Coordination

The E&V Team should attempt to obtain periodic briefings from the VHSIC JPMO
on their plans and schedule. The E&V Team Chairperson should attempt to keep
the VHSIC JPMO informed on the status of the E&V Task. IDA will attempt to 0

identify areas of common interest as part of their support to both programs.

4.21.8 Resolution of Issues

Issues should initially be addressed within the respective task (VHSIC or S

E&V). Recommendations should be developed within that task on how to resolve
the issue, and should be forwarded to the other task for consideration. The
appropriate Air Force or AJPO/STARS chain should be used for issues which cannot
be resolved at the program level.

4.21.9 Focal Point

The focal point is indicated below

Egbert D. Maynard

400 Army Navy Drive

Arlington, Virginia

Commercial (202) 697-9216

4.22 Virginia Polytechnic Institute APSE Validation Effort

4.22.1 2urpose

The Virginia Polytechnic Institute (VPI) and State University APSE Validation
Effort is a research project conducted by the VPI Department of Computer Science
for the AJPO through the Office of Naval Research. The purpose of the effort is S

to identify and address research issues related to, and supporting, APSE
validation. Based on a position paper and proposal delivered to the KITIA
meeting in June of 1982 by Tim Lindquist, an initial effort addressing

validation needs in an APSE was conducted during the summer of 1982. This study
raised issues indicating the need for an APSE model able to accomodate

distributed and secure APSEs. It further indicated a need to address validation S

of a kernel set of APSE facilities to achieve transportability of APSE tools.

Subsequent efforts on this project have detailed an APSE model based on the Open

Systems Interconnection (OSI) model, and have developed an Abstract Machine

approach to specifying the Common APSE Interface Set (CAIS) and a technique for

developing a validation suite from the specifications. The project is in the

D-46

- l .-.- ---, -.i -. .' ', ...i i] '] " . . . • .. , .. '. " .-. .- , . , . . . , .- ..- '.- . ., .:. '. .,' ., ". .' ' . " ' ', ' -] "S

28 August 1984 S

process of developing specifications for the CAIS Node Model and Process
Management sections.

4.22.2 RP.lAttonshtp to the E&V Task 0

The KIT/KITIA'-designed CATS will become a MIL-STD in 1985. Further, a CATS
Validation Capability (CVC) will be developed through the E&V Task to determine
conformance to the CAIS. The specification and validation techniques developed
by the VPI APSE Validation Effort relate to both of these activities.

4.22.3 Benefits to the E&V Task

The VPI APSE Validation project specifications for the CAIS Node Model and
Process Management sections, will serve as inputs to the development of a CVC.
Whether the specifications generated are used for the CAIS, they isolate issues 5
that must be addressed by the CVC. The Abstract Machine descriptions and the

technique for generating test cases from the Abstract descriptions, can be used
to identify areas the CVC must address.

4.22.4 Benefits to the Related Effort/Organization

This project uses the E&V Team and the KIT/KITIA for review and feedback on
its results.

4.22.5 Impact on E&V Task Schedules S

The tollowing VPI APSE Validation Effort schedules are of interest to the E&V
Task

September 1, 1984 -- Preliminary Abstract Description of CAIS Node Model

November 1, 1984 -- Preliminary Abstract Description of CAIS Process
Management

4.22.6 Impact on Related Effort/Organization Schedules

The E&V Task schedules regarding the CVC impact this effort.

D-4 7

p _0

28 August 1984 0

4.22.7 Required Level of Coordination

The Principal Investigator of the VPI APSE Validation Effort (Tim Lindquist),

is a technical consultant to the E&V Task, and the E&V Team Chairperson

(Virginia Castor), is the Project Monitor. 0

4.22.8 Resolution of Issues

The focal point for coordination will assist in resolving any issues that

arise which may adversely affect either effort. 0

4.22.9 Focal Point

The focal point is indicated below

Dr. Timothy E. Lindquist

Department of Computer Science

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Commercial : (703) 961-7537 (961-6931 messages)

MILNET LINDQUIST%VPI@RAND-RELAY

4.23 WWMCCS Information System -.

4.23.1 Purpose

The World Wide Military Command and Control System (WWMCCS) Information System
(WIS) effort is a Joint Service Program with the goal of modernizing the

existing WWMCCS automatic data processing (ADP), and to upgrade that system with S

new capabilities to satisfy developing requirements. The WIS program intends to

use an Ada designed and implemented software first approach to the upgrade in

order not to become locked too early to specific hardware.

D-48

I

L.~2 '~* -. * *.*.*..

28 August 1984 -

4.23.2 Relationship to the E&V Task

WIS is genarating a very broad systems development and maintenance environment
(Conan). This is to be active on multiple machines over a network. It will
have control of code, data, and documentation at several applications levels. 0
It is not a simple APSE, but may contain APSEs. The environment will be
developed in Ada, starting from an existing program control and support system.
A number of machine-independent tools are being assembled to provide an initial
programming capability. Compilers will be evaluated and used as appropriate. - -''

4.23.3 Benefits to the E&V Task 0

The WIS program will need to evaluate early in the program various tools and
tool sets, as well as the tools they develop themselves. This will provide two
opportunities for the E&V Team. First, the E&V Task should be able to adopt or
learn from any technology for specific evaluations that WIS develops. Second,
WIS can possibly be an early user of any E&V technology developed. Present WIS
work includes compiler criteria and benchmarks to measure performance against
those criteria.

4.23.4 Benefits to the Related Effort/Organization 0

The WIS program should be able to take advantage of any E&V technology that is
developed.

4.23.5 Impact on E&V Task Schedules -

i-t W1 VWLL tL:i bcll-eduies may impact the E&V Task schedules.

Jun 84 - First cut compiler criteria and benchmarks

Jul 84 - Interim initial environment up on IBM 3083

Jul 84 - First draft of final environment (Conan) specification

Sep 84 - First WIS-specific benchmarks

Oct 84 - Block 1 tools operational

Nov 84 - Refined compiler criteria distributed

Nov 84 - Draft Conan environment specification distributed

Apr 85 - Initial environment largely Ada - ported to CUS processor

Apr 85 - Refined Conan environment specification distributed

D-49

. ,

. -

* " ' -' ' " .. . "'' ' ' :' '-" ' =--, -'L' - '-''-K- -.. . .--.-.. ..-.-..".."."". .".. . .". .". ."-'.

* 28 August 1984 0

Jan 86 - Internal delivery of Conan environment

4.23.6 Impact on Related Effort/Organization Schedules -

No schedule impacts are currently identified.

4.23.7 Required Level of Coordination

The E&V Team should keep current electronic status from the WIS Joint Program
Management Office (JPMO) on their plans and schedules. The E&V Team Chairperson
should attempt to keep the WIS JPMO informed on the status of the E&V Task.

4.23.8 Resolution of Issues S

Issues shall be addressed within the respective tasks (WIS or E&V).
Recommendations should be developed within that task on how to resolve the
issue, and should be forwarded to the other team for consideration.

4.23.9 Focal Point

The focal point is indicated below

Col WillUram A. "WriiLaker

WIS JPMO/TE

Washington DC 20330

Commercial : (703) 285-5065

Autovon 365-5065

MILNET WWHITAKER@ECLB

D-50

• .-, .'. L ' ' - . - .-. i -- .- -. i- .'; " i' i- i , ' .. i ". .'. ;- .' - .- ', i .' .' ., i i' '. . " '. . -' -.. ' -'. ..S

28 August 1984 0

1. Appenix A

1.1 Acronyrus

ACVC.........................Ada Compiler Vali1dation
Ca pab illity

ADP..........................Automatic Data Processing0

AFATL........................Air Force Armament Laboratory

AFB..........................Air Force Base

ATE...............Ada Integrated Enviroment

AJPO.........................Ada Joint Program Office

ALS....... o...................Ada Language System

ANSI........ o.................American National Standards
Institute

APSE.........................Ada Programming Support
Envi ronment

ATYS........................ Ada Test and Verification

System

AVO...................... ... Ada Validation Organization

CATS.........................Common APSE Interface Set

CAMP...... o.........o........Common Ada Missile Packages

c31..........................Command Control Communication
and Intelligence

CVC......................o....CAtS Validation Capability

DDT&E.......o.................Director Defense Test and
Evalua tion

Do o Dprteto ees

DoD........................ Department of DefenseDietv

E&V............... Evaluation and Validation

IDA................ o.... Institute for Defense Analyses

D- 51

.... , : i 1 - .
,

. .

28 August 1984

IDAS Integrated Design Automation

System

IE&V Independent Evaluation and

Validation

ISA Instruction Set Architecture

I&T Interoperability and
Transportability

JPMO Joint Program Management Office

JSC Johnson Space Center

JSSEE Joint Service Software
Engineering Environment

KAPSE Kernel Ada Programming Support
Environment

KIT KAPSE Interface Team 0

KITIA KAPSE Interface Team from
Industry and Academia

MAPSE Minimal Ada Programming Support
Environment

MCF Military Computer Family

MIL Military

MOA Memorandum of Agreement

MRASM Medium Range Air-to-Surface
Missile

NASA National Aeronautics and Space
Administration

NOSC Naval Ocean Systems Center

OSI Open Systems Interconnection

PA-APSE Prototype Advanced Ada 0

Programming Support Environment

PE Project Element

PPG Program Planning Group

1)-52

-.

28 August 1984

RADC.........................Rome Air Development Center

SEATECS......................Software Engineering Automation
for Tactical Embedded Computer
Systems

SEE..........................Software Engineering Enviroment

SEll..........................Software Engineering Institute

STARS...................... Software Technology for"
Adaptable Reliable Systems

STD..........................Standard

STEP.........................Software Test and Evaluation
Project

TAG........................ Tactical Ada Guidance

TCSD....................... Technical Coordination Strategy.
Document

TECWG...................... Technical Coordination Working
Group

T&E..........................Test and Evaluation

*TEMP.........................Test and Evaluation Master Plan

*TIC..........................Test Instrumentation Controller

USDRE........................Under Secretary of Defense for
Research and Engineering

VAX..........................Virtual Address Extension

VHSIC....................... Very High Speed Integrated

D Circuits

VMS........................ Virtual Memory System

VPI..........................Virginia Polytechnic Institute

WIS..........................WWMCCS Information System

WWMCCS...................... World Wide Military Command and
Control System

D- 53

T . . . - - - -" " - - -. - -- ' " --. .- , - ---- '--. - - . -- • .- .- r

28 August 1984 ---

II. Appendix B

I1.1 TECWG Members

James S. Williamson, Chairperson
Air Force Wright Aeronautical Laboratories

Kevin Chadwick
Canadian National Defense Headquarters

Mark Mears
Air Force Wright Aeronautical Laboratories

Capt. John Taylor
Air Force Logistics Command

D-5

D- 5

S

....................... - -. .. -. . ,.~t. t~~ 9~..t~ .. aJ'..X 2tttiA,2. n.Z ta ...

lit. Appcudix C 28 August 1984

111 RTEM

EVALUATION and VALIDATION

RELATED TECHNICAL EFFORTS MATRIX

(RTEM)

D- 55

- - - ,- - -. , .w -r . . r . . - - - - --. .-. - - - .- -. v ,- -j..r - r-

28 August 1984 .

The following represents the Evaluation and Validation (E&V)
Related Technical Efforts Matrix (RTEM), indicating members
of the E&V Team, along with potentially related technical
efforts/organizations with which each indicated member is
involved. This matrix will reside in <EV-INFORMATION> and be S
continually updated as appropriate by the Technical
Coordination Working Group (TECWG).

D3-56

%! . - •.. .

. ,

.

28 August 198-.

RELATED TECHNICAL EFFORTS MATRIX

(RTEM)

1 <> RELATED TECHNICAL EFFORT/ORGANIZATION > 1 0
-------------- -- --- --- --- --- --- --- --- --- --- --- --- --

I EEEEEEEE II !2 13 14 !5 16 !7 18 !9 110!11!12113!14!151161171

I EEEE I 1 1 2 I I I I I I I I I I I I I
I EF. IA !A !A IA IA !A !A IA IC !J !J !K IM IP IS IS IS I
I EEEEEEEE Id !d Id Id !d Id Id II IA IS IS II IE IA !E IT IT I
I !a !a !a !a !a la !a !R !M IC IS IT IT I IA IA IA I
SI I 1 I I I I IP I IE 1/ IH !A IT IR !R I
I & !C II !J IL IT IV !I IF I IA !E lK 10 IP IE IS IS I

13 IN !0 !A !E IA !7 10 1 Id I !I ID IS IC I/ I/ 1
I VV VV !I IT !I IN IS IL 15 !R I Ia I IT !0 IE !S !H IM I
I VV VV I !E IN !G IT 11 ! I IC I I I II IL I I !U IE I
I VV VV IT IG IT IU I ID !A !E I !P I IA !0 1 1 IM IA I
I VVV !E !R I IA !A !A I I I !R I I IG I I IA IS I

V IS IA !P !G IN IT IC IC 1 101 I !Y I I IN !U I
!T IT IR IE ID 1 !0 10 I !J ! 1 I I I I IR I
I !E 0 I ! 10 !M IM I !E 1 I !C I !R !E I
IA !D !G IS IV IN !P !P I IC I 1 !0 1 1 !E IM I
IN ! !R !Y !E 1 I1 I I IT I I !0 1 I IS IE I

I TEAM !D !E IA IS IR !0 IL IR I I I I !R I I I IN I
I IN !M IT I !R !E !E I I I ! ID I I I& IT I

I EMBER !E IV I !E IS IG IR IS I I I I I 1 I I
I ,V !R !0 IM !Y I I I I I I I IT I I IE IT I
I !A IM IF I !S I lR !M I I I I !E I I IN IA I

IL IN IFI I I IT !AI 1 1 1 IA I I IG S I
I ITI I I I I IN I I I I IM I I 1 K 'II t r * * #**** #*** t * ********** ***** **** ************ *****************

I !1 12 13 !4 !5 16 17 18 !9 !10!11112!13!14!15!16!17!, -- ,-- -- ,--, -- -- ',--I--I---,--I--,--I--I--,-- 1-- -- , .
!ANDERSON, C * 1 I 1 I I I I !X !X I I I I I 1 1 1 I

------------ '--I--. -- ,--I--I--,----,----,--,--,
" 1: 1 I I I I I I ! I I I I IX ix I

$CASTOR, J 1 I 1 1 1 1 1 1 1 1 IX 1 1 1 1 ,

'ESTES, N 1 1 1 I I I IXl I I I I I I I I I "
I ------------ - -- I- I _ _ t _ _ t_-,- -_ _-_ ,_- , _ _ ! _ _ , _ _ , _ _ , -
!HUMPHREY, T * I I I I I I I 1 1 IX I I I I I I 1 .

S-------------- !---I--I----------!--,--,--,--,----,--,--,--,
'KEAN, L IX IXI I !X I I I I 1 1 I X I I I I I
-------------------- I-----I------------I
IKNAPPER,R 1 _II I !XI 1 1 1 1111 11.1 1

iKRAER, J * 1 1 i 1 1 1 1 1 1 1 IX IX !1 1 1 1---------------I-I- -- '!---l--l--I---I--I--I--I--I--I--'I--I ".I---- -- - - - - - - - - - -

'LINDQUIST, T *1 1 1 1 1 1 I I 1 1 IX I I I I I IS----------....---,--t--I--I--I--I--I--t--t--I--I--I--I--I--,--l -- I -S
IMARTIN, R * I I I 1 I I I I 1 1 IX II I 1 1 1 1I---- ---------------- -------- ---------------------- ,-- "..-
IOBERNDORF, P 1 1 1 I 1 1 1 1 1 1 1 IX I IX IX I I
I --------------
ISCHAAR, B LCDR! I IX I II 1 1 1 1 1 1 1 1 1 11
I -------------- I--I--I--I--I--I--I--I--I--t--I--I--I--I--I--I--I
ITAYLOR, G I I I I 1 1 1 1 1 1 1 IX I I I I I '..... 1---------I---I -- I!--It--It--I--I -- I--Il--I--I--I -- I -- I--I!--I --I 0
,WILLIAMSON , J I I I IX 1 1 I I I I I I I I I 1 I I
I ----------------- I--,--,--I--I--t--t--t--t--t--t--1--I--I--l---

SEE ALSO RTEM (CONTINUED)

)-57

~~~~~~~~~. .... - ..... . ......--....... ]..................... ...-.....-.
~~~~~~~~~~~~. . . . . . . . . . .. . ..... ........ "" "- ' "-"----;. " . . . . . .-- "."_* - .--- '""''' .•"


•~7r7 "

28 August 1984

RTEM (CONTINUED)

I ! <> RELATED TECHNICAL EFFORT/ORGANIZATION 0 1
-- -------------- -- I0
I EEEEEEEE !18!19!20!21!22!23!24!25!26127!28129130!31 132133134!

EE
I EEEE IS IT ITIV!V!W 1 1 1 1 1 1 I 1 1 1 1

EE !T !A !E!H iP 11 | | 1 , 1 -1 1 1 .
I EECEEEEE !E !C IL IS II !S ! I 1 1 1 1 1 .1 1 -

IP IT IE 1 1 1 1 1 1 1 1 1 1 1
I 1 I IS I C IA 1 1 I 1 1 I 1 1 1 1 1 11&I IC !0 1 !P 1 1 ! ! ! 1 '

I I F I IS I I I I I I 1 1 1 I 1 1 1
II IL IT t lI I, 1 1 1 1 1 1 1 1

I VV VV I !A ! ! V! , 1 , , I 1 I 1 I I 1
I VVVV I d !P I IA! I 1 I I I t I -1 I I 1

VVV I ! a S I!L I 1 t I I I I 1 I I
V I ! !EI ! 1ll! !1111 I 1

I !G! I !D III1 1 1111111
I U1 ! ! 1 !A I I 1 1 1 I I I

I II I I IT I 1 1 1 1 1 1 1 1 1 1 '
I I ID I ! I t I ! i 1 1 I I I I

TEAM I !A I 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I IN ! I IN ! I I I I I I 1 1 1 1 I

I MEMBER I IC I 1 I I I I 1 I 1 1 1 1 ! .. _I I~ IE I I !E 1 1 1 1 1 1 1 1 1 1 1
II t l I i I Ii I I I I I I IIf I F I ! 1 f ! II II !

I 18! 19!20!21122!23!24!25!26!27!28!29!30!31!32!33!34!

!ANDERSON, C I !X! I I I ! I 1 I 1 1 , i I I -! -- - - - - _- t_- __ _ . - l - - - !_ .- .-1, t- l - - I - - t - .
!HUMPHREY, T I I IX! ! I i I I I 1 1 1 1 1 1
----------------------- --- !--'!--t--t--!--!--'--.--'--

.--------------I--------------t . .
ILINDQUIST, T 1 I 1 I IX I I 1 1 1 I I I 1 1 1 I I

'MARTIN, R IX! I I 1 I I 1 I I I I I I 1 I . "------------.. -- ! -! -! -I- t- I- I- - - ! - - - l - - - - ' - '" ..

D-.58

. . .. o ,, .- o •

• ., ,., . . ,,. ' . . ,"... . . . ' . .- -... •. - r.

28 August 1984

The following provides an appendix of acronyms and
abbreviations as used in the above Related Technical Efforts

* Matrix (RTEM)

APPENDIX0

RTEM ACRONYMS/ABBREVIATIONS

kJP P0................... Ada Joint Program OfficeAPSE.................... Ada Programming Support Environment
CAMP.. Common Ada Missile Packages
COMP Computer
COORD................... Coordinating
C31 Command Control Communication and

Intelligence
EF F.......................Efforts
ENG.........o............ Engineering....
ENVRMNT................. Environment
EVAL......................Evaluation
JSC.......................Johnson Space Center
JSSEE............o....... Joint Service Software Engineering

Environment
*KIT.................. KAPSE Interface Team

KITIA................... KAPSE Interface Team from Industry and
Academia

MAN.......................Management
OFF...........o......o.... Office
ORG o....... Organization
PA..................... oPrototype Advanced
RES.......................Resource
RT............o..........Runtime
SEATECS.........o..........Software Engineering Automation for

Tactical Emnbedded Computer Systems
STARS o Software Technology for Adaptable Reliable

Systems
STFP....................... Software Test and Evaluation Project
SYS..................o System
VER..............*.. Verification
VHSIC.........o.......... Very High Speed Integrated Circuits
VPI..................... Virginia Polytechnic Institijte
WIS.......o................MCCS Information System ?Note

"WWMCCS" stands for Worldwide Military
Command and Control System.)

0

D- 59

APPENDIX E

Evaluation and Validation

Public Coordination Strategy Document

Version 1.0

6 March 1984

E-1S

*0 °.

.- . -* *

Table of Contents

.lINT RODUCT ION..........................E-3

1.1 Objective............................E-3

1 .2 Background . E-

I2. SCOP E-3

3. APPROACH...............................E-4

3.1 Briefings...........................E-4
3.2 Papers.............................E-4
3.3 LCF Newsletter........................E-4
3.4 E&V Information............................-5
3.5 E&V Quarterly Report......................E-5
3.6 Project Reference List....................E-5

*3.7 E&V Public Report........................E-5

Al'PPEND ICE S

A. Organizations...........................E-6

B. Publications............................E-9

C. Project Reference List...................E-11

D. IUBWC Forms..........................E-12

E. Vugraphs..............................E-16

F . E&V Minutes Format.........................E-17

G. F&V Public Report Format....................E-19

E- 2

S

1. INTRODUCTION

1.1 Objective

The purpose of the Evaluation and Validation (E&V) team"is
to develop the techniques and tools which will provide a capabi-
lity to per form asz!essment of Ada Programming Support
Environments (AI'3Is) and to determine conformance of APSEs to the
Common APSE Interface Set (CAIS). As the E&V technology is devel-
oped, it will be made available to the community for use by DOD
components, industry, and academia as deemed appropriate by the 0
respective organization. The objective-of the E&V Public
Coordination Working Group (PUBWG) is to transition this tech-
nology to the public as it becomes available. This document
describes the strategy for accomplishing this transition.

1.2 Background

Currently there is little data available on correlating
specific APSE capabilities with project requirements. As stated
in section 1.1, one of the goals of the E&Vtask is to provide an
evaluation capability for those features of APSE components for
which there exists no validation capability or formal standard
(e.g., Ada compiler's implementation dependent features, run-time
system characteristics, etc.). Since this information is criti-
cal to the success of the software development process, it is
essential that emerging evaluation techniques resulting from the
E&V task be provided to the public as soon as they become .
available.

Similarly, in order to ascertain whether data & tools from
one APSE will be able to be transported to another APSE, some
metrics must be applied to the APSE interface (i.e., the CAIS). -

These metrics will be developed by the E&V task in order to pro-
vide a CAIS validation capability. Again, this information is
vital to software program managers and designers who plan to
achieve maximum software portability and should be made available
to the public as it emerges. It is the intent of this document
to describe the procedures to facilitate the transition of the
E&V technology to the public.

2.0 SCOPE

In order to accomplish the objectives described in section 1.1,
it is essential that the E&V team maintain open channels of com-
munication to the public. The public coordination strategy .
outlined in this document primarily focuses on communication ori-
ginating from the E&V team to the public and associated feedback
from this communication. Technical information related to E&V
orginating outside the Team will be monitored by the E&V

E-3

--'--",- , " -'---,'.: .- "9 __' ,. -'d. -"' ". ' -. ''.-''" '. ,''" " " . " "."" "' -. • - - - ' " " .-. ' i '

Technicz:.i i., G;:'oup (T}.,,'.) and transmittcd to the
appropriate E. V working groups. The mechanisms supporting the
outflow of information from the Team to the public are described
in section 3 .and appendices A-G.

3. APPROACH -

Sevefal mechanisms for communication to the public have
been identified to azsist team members in the public exchange
process. These mechanisms will be outlined in the following
subsections.

3.1 Briefings

It may be appropriate for team members to occasionly present
briefings to the public. A current set of "official" E&V vugraphs
(see Appendix E) will be maintained by the PUBWG for use by any
team member. It will not be necessary to get permission from the
E&V Chairperson to brief. However, following a presentation,
submission of the "Public Exchange Record" to the Chairperson,
with a copy to the Team is required. The format for this form is
listed in Appendix D and on MILNET file <

Briefings may be presented to DOD organizations, committees
and conferences as well as .to industry and academia.

A list of candidate organizations is presented in Appendix A,
along with the primary mission and point of contact.

An E&V update will be presented by the Chairperson or
designated alternate routinely at the AdaJUG Government Corner
and the Ada TEC Environment/Standards subcommittee session. -

3.2 Papers

Various team members may wish to submit papers to pro-
fessional journals. The paper must be submitted to the E&V
Chairperson for review and approval prior to publication. A copy
of the approved paper should be forwarded to the PUBWG for
inclusion in the Annual Report. A list of candidate publications
is given in Appendix B, along with procedures for document sub-
mittal.

Also the author of the paper should complete the PUBWG form
listed in Appendix D for inclusion in the E&V Project Reference .-.-- -.
List maintained by the PUBWG on the ARPANET.

3.3 LCF Newsletter

A quarterly report based on the official minutes from the
E&V meetings will be submitted to the LCF Newsletter on a routine
basis. This report will be prepared by the PUBWG and submitted
to the E&V Chairperson for approval prior to publication.

E-4

3.4 E&V Information

Another mechanism for communication with the public is vie.
the ARPANET E&V Information account. The most recent E1kV mitutes
will be presented in "E&V Today" and past minutes will be file;d
with file referernce by date given in "E&V Yesterday". These
minutes will be taken by the PUOLG and submitted for Team ccM.r:cnt
and approval prior to entry into the E&V Information account. A
hardcopy will also be incorporated in the Annual Public Report.
The format for the minutes is presented in Appendix F.

3.5 E&V Quarterly Report

As stated in section 3.3, the PUBWG will prepare a brief B&V
quarterly report based on the E&V minutes. After being reviewed a
by the Team and approved by the E&V Chairperson, the report will
be sent to the LCF Newsletter, put on the E&V Information ARPANET
account and be available for publication or "handouts" at
appropriate conferences.

3.6 Project Reference List S

A list of E&V related documents will be kept in the Project
Reference List on the E&V Information account. This list will be
maintained by the PUBWG. Team members should contribute to the
±ict 1y filling out the template listed in Appendix D and sending
it t) the Chairperson with a copy to the team. The list will not S
only inform the public about various E&V related studies but
also keep the Team up to date on any related technology.

3.7 E&V Public Report

An E&V Public Report will be published annually in order to
provide the public with information on the activities of the F&V
Team. The E&V Public Report will contain the recorded minutes of
all E&V Team meetings as well as all position papers prepared by
E&V Team members. The E&V Public Report will also contain E&V
position papers written by industry/academia participants in the
annual E&V workshop, as well as all documentation which results
from the E&V workshop. The format of the E&V Public Report is
described in Appendix G.

E-5

*o . . .

APPENIDIX A

Organizaticons

The following orgar-izations have been identified as possible can-

didates for E&V related presentations. DoD and industry/academia
organizations are listed separately.

DoD Organlzation and Conferences

AFSC Embedded Computer Resource Focal Point Group

This group consists of representatives from the AFSC labora-
tories and product divisions associated with embedded computer
resources. Meetings are held approximately three times yearly.
Attendance is usually limited to members. To present a special
briefing of interest contact your AFSC ECR focal point or Col
Kenneth Nidiffer, AFSC/ALR, Andrews AFB, DC 20332, AV 858-5731.

AFSC Software Technology Working Group

This group consists of representatives associated with soft-
ware technology from the AFSC laboratories. Meetings are held

approximately four times per year. Only official members may

attend. To present a special briefing contact your AFSC represen-
tative or Lt Col Jim Riley, AFSC/DLA, Andrews AFB, DC 20334,
AV 858-2482.

Armament/Avionics Stadardization Conference

This annual conference (usally Sept) is jointly sponsored by
AFSC and ALC. Candidate presentations should conform to panel
issues. The chairman of the standardization Panel is Lt Col
Frank Grosso, Hq USAF/RDPV, AV 227-7715

KAPSE Interface Team/KAPSE Interface Team Industry & Academia
(KIT/KITIA)

The purpose of the KIT and KITIA, under the direction of the
AJPO is to develop a standard set of KAPSE interfaces to ensure
the transportability of tools and the interoperability of data
between conforming APSES. The E&V Team will interact with the
KIT/KITIA for information exchange via briefings and inter-
membership (several members of the E&V Team are also members of
the KIT/KITIA. The Chairperson of the KIT is Patricia Oberndorf,
NOSC, San Diego, CA.

E-6...

METHODMAb

The purpose of the .ETHODMAN effort, under the direction of
the AJPO, is'to develop requirements and encourage the develop-
ment of methodologies to support the entire software development -

life-cycle. One of the goals of the PTHODMAN effort will be the
construction of a complete set of tools to support a selected
methodology. The EaV Team will interface with the METHODIN .: N
effort for information exchange, particularly in the areas of -

tool definitions, evaluations and validation. The Chairperson
is • S
AJPO Director's Advisory (ADA) Board

The purpose of the ADA Board is to advise the director of the
AJPO with regard to policy and issues related the Ada program.
The AJPO Director is Dr. Robert Mathis, AV 224-0208.

Software Technology for Adaptable Reliable System (STARS)

The STARS program, under the direction of the DoD, was
established to develop and promote new software technology. The
Acting Director of the STARS program office is Col Vance Mall, AV
224-0208.

Ada Validation Organization (AVO)

The AVO, under AJPO direction, has established formal proce-
dures for testing Ada compilers to ensure compliance with the "
language standard (ANSI/MIL-STD-1815A-1983). The E&V Team will
interact with the AVO in the area of validation requirements and
procedures. The Deputy Director of the AVO is Robert Knapper,
Institute for Defense Analysis.

E-7
_0

.-

S

Other Or tni::atio:::

Ad aTPC

This profes;ioral association meets four times yearly. .
Technical topicz L; D ciated with the use or implementation of ,'.da
are welcoe. 1:-- -re information concerning the appropriate
ses-; ori -o prr,, L ,-':cfing,, corntLict Jean "hitaker, Hugl."es
Aircraft Co. (714) 7320-9231.

AdaJUG

This organi::.2tion brings together representatives from
industry, academia and the Government interested in standar-
dizatin and language control activities, compilers and tools;
applications and development efforts associated with JOVIAL and
Ada. The Government Corner is an appropriate session to brief
short presentations (15-20 min) concerning Government sponsored
Ada Activities. The Chairman of this session is Ron Vokits,
ASD/AXT, Wright-Patterson AFB, OH 45433, AV 785-5941. For longer
presentations contact the AdaJUG Chairperson Donna Grant at (916)
920-3663.

National Security Industries Association (NSIA)

Members of this association are defense contractors. Open
National Conferences focusing on special topics are held several
times a year. For further information contact W. M. McMurray,
General Dynamics (314) 851-8910.

Institute of Electrical and Electornics Engineers (IEEE)

This professional organization has over 210,000 engineers and

scientist members. There are numerous meetings and special - 0
technical conferences held annually. For more information con-
tact Eric Herz, Executive Directorate (212) 705-7900 or write 345
East 47th Street, New York, NY 10017.

Association for Computing Machinery (ACM)

This professional organzation has over 53,000 members asso-
ciated with computing and data processing. There are over 31 spe-
cial interest groups. National conferences are held annually
(usually in October). For more information contact Sidney
Weinstein, Executive Director at (212) 869-7440 or write 11 West
42nd Street, 3rd Floor, New York, NY 10036.

E-.8

7..

KS

S APPEI.ThIX B

Pu bl cati ons

The follow-n& publi.cations have been identified as candidatc-e for
publish~ni.° -T _ V related paper. Procedures for document submittal
are also ir.cluded.

Computer 1agazine "IEEE)

Articles that cover all aspects of computer science are S
welcome. Articles are usually survey or tutorial in nature.
Submit six copies of the manuscript including illustrations,
references, and authors' biographies to the editor-in-chief:

Stephen S. Yau
Dept of EE and Computer Science 0
Northwestern University
Evanston, IL 60201
Telephone: (312) 492- 3641

Defense Electronics

Articles covering aspects of computer science that are rele-
vant to the DoD community are welcome. Send to:

EW Communications, Inc.
1170 East Meadow Drdive
Palo Alto, CA 94303-4275 O
Telephone: (415) 494-2800

Ada Letters (ACM)

Information dealing with all aspects of Ada are welcome.
"Short Notices" announce meetings or publications. "Letters to
the Editor" raise issues or answer them. Articles typically deal
with in-depth technical topics related to the use of Ada. "Ada
Events" announce significant events of major interest to the Ada
community.

Short Notices .
Letters to the Editor

Mary S. Van Deusen - -

34 Archer Street
Wrentham, MA 02093 0
(617) 384-2526

E-9
'" 9

:::}:?-i:%.

" b.: ..-',

. --. - .' .' - , - -. .:

0

Artic~ev. Ronald F. Brendcr
DEC
110 Spit Brook Rd
ZKO2 - 3/1430
Nashua, Ilew iiampshire 03062
(603) 881-2088

Ada EveritLl Robert I.. Eachus
Honeywell SSPD
300 Concord Road
Bill~erica, MA 01821
(617) 671-2907

Submiss4.ons should be single-spaced with no page numbers, and
may be printed two-up. Submission deadlines Aug 511, Oct 31, Dec
31, Feb 28/29, Apr 30 and Jun 30.

Communications of the ACM

Papers on all aspects of computing are solicited. (For format,
see July 1982 issue.) Submit to:

Nicolas Mokhoff
ACM Headquarters
11 West 42nd Street
New York, NY 10036
(212) 869-7440

JOVIAL LanguageControl Facility Newsletter

Brief articles on announcements related to Ada activities are .

welcome. Submit to:

ASD/ADO 2
Wright-Patterson AFB, OH 45433
(513) 255-4472/4473
AV 785-4472
LOF at WPAFB-JALCF

E- 10

Projtectk Rrference List

Th(e followinC docu-,i-nts have been idenf-itUied as E&-V related.
Th.is list' is araleon the ARPA!KLT (ES&V Inf~ormation account).

* The list ~rtJin this appenu i x is an initial one, and wil.,
* expand as other E&V related documents are identified and as t eam

members and workLhop participants contribute to the E&V knowiEe --e
* base. The list is in alphabetical order by author.

0

E- 11

APPEINDIX D

PUBWU Form3

* There are three forms for the submission of data to the Team:
* the Public Exchan-. Pecord, the Project Reference List
* Submittal*or arid the V Status Report.

* The Public Exhanee Record shall be submitted following the pre-
sentation of a pape- or "official" E&V briefing. The form shall
be submiltted to the Chairperson with a copy to the Team.

The format of the form is listed below and may also be found in
<CASTOR. PUBWG>.

E-12

PUBLIC EXCHANGE RE--CORD*

TYPE OF £:H!G: (Briefing, paper etc.)0

SPECIFIC .TGriC:

DATE:

PLACE OR PUBLICATION:

ATrr' I DEES:

PEQSB1'T ER:

IFATERIAL PRESENTED: (Send via net to Castor with copy to the Team
or send by mail to Virginia Castor, AFWAL/AAAF-2, WPAFB, OH 45433
and Chris Anderson, AATJL/DLMM, Eglin APB, FL 32542.)

FEEDBACK:

*Team members should submit this form to Castor with a copy to
the Team.

E- 13

PROJECT REFEFE!NCE LIST S~3. SO~FOPf..

TI TLE:

DATE:

AUTHOR(S):

AFFILIATE:

SPOI'S OR:

ABSTRACT:

RELATIONSHIP TO E&V: a

TO ORDER:

*Team members should submit this form to Castor with a copy to the
Team.

E-14

El--V St: AV 'p pt

The ElA-V Sta.tus Report shall be submitted by working group chairs
to tiie E&-V Chairperson at the quarterly E&V meeting. The format
is as fol-lows.

* WORKING GROUP:

DATE:

* PERSONNEL CHANGES:

DELIVERABLES DUE THIS QUARTER:

ACCOMPLISHRENTS THIS QUARTER:

* UNRESOLVED PROBLEMS OR ACTION ITEMS:

PROJECTED WORK FOR HEXT. QUARTER:

DELIVERABES DUE NEXT QUARTER:

E- 15

APPENDIX E

Vu raphs

* The M&V Team maintains an."official" set of vugr.aphs to suppor-t
individual Tea~m rzemner presentations at DoD and industry/academ-ia
meetings and confce:er,-,ces. The initial set is presented in this

* appendix. It is envisioned that this set will continuously
evolve as the E&V effort matures.

E- 16

APPENDIX F

F&V Minutes Format

The L~inutes of E&V quarterly meetings are presented on the
ARPA19ET in the E&V Information account and in the E&V Public
TRepor.t. T2he for.m..t of the minutes is outlined below.

-179

Minutes

of the

EVALUATION 6 VALIDATION (E&V) NEETIIJG 0

Date

Wright-Patterson Air Force Base, Ohio

1. Date

!.1 Topic 1

!.2 Topic 2

1.N Topic N

2. Date

2.1 Topic 1

2.2 Topic 2

2.N Topic N

E- 18

....

.. . '"'"

.

.. .

* Ap~pendix G

E&V Public R'eport Format

The E&V Public Rei.ort will be published annually. It will be
available to ite .vublic through the National Technical

* Inf'ormation S.r'-vicr. (1.,MS). The formnat for this report is 1.;.tead
below.

E- 19

c " r

I. Introduction

II. Team Proceedings

" A. }&V I';nutes 7-8 Dec 1983

B. E&V Minutes 7-8 Mar 1984 --

C. E&V Minutes 6-7 Jun 1984

D. E&V Minuteq 5-6 Sep 1984

III. E&V Documentation 0

A. E&V Effort Planning

B. E&V Plan

C. Working Group Status Reports S

D. E&V Team Point Papers

IV. E&V Workshop

A. Minutes

B. Point Papers

C. Attendees

Appendix A E&V Team Members

E-20

-.. i S

..

Appendix F

S

.4inutes

of the

EVALUATION & VALIDATION (E&V) HEETING
0

7-8 December 1983

Wright-Patterson Air Force Base, Ohio

F

S

F-i

o0

..

. -. &. 2'. . 2'.... 2, t...

-A153 619 EVALUATION AND VALIDATION (EIV) TEAM PUBLIC REPORT 4/
VOLUME 1(U) AIR FORCE WRIGHT AERONAUTICAL LAS
WRIGHT-PATTERSON AFB OH V L CASTOR 30 NOV 84

VNLSIID RWLT-511-OL-i F/G 14/2 N

mhhhhmhhhEEEEE

Ehhhhhmmmmhhu

* - -~s - - . -.
-- -

= - 1 ----..- -

%I

1. 11550
i- i,

11111.0 ~ 1-22

A. 1 12. -...
-..- i

1f I -

III.&:N.IIIII. 1111 I _. 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARSIR63A

.
°.

Minutes
E&V Meeting
7-8 Dec 83

Table of Contents

1. Wednesday, 7 December 1983 F-3

1.1 Welcome and Introductions F-3

1.2 Air Force Perspective of E&V. F-3-
1.3 E&V Task Overview. F-40
1.4 Ada Joint Program Office. F-5
1.5 Philosophy of Environments. F-6
1.6 KAPSE Interface Team F-7
1.7 Ada Compiler Validation F-8

18E&V Plan. F-il
19Open Discussion. F-12

2. Thursday, 8 December 1983 F-13

*2.1 Announcements/E&V ECLB Accounts Info F-13
2.2 Common APSE Interface Set (CAIS) F-13

23E&V Working Group Review/Selection F-14
K2.4 Working Group Reports F16

2.4.1 Technical Coordination Working Group (TECWG) F-16
2.4.2 APSE Analyst Working Group (APSEWG) F-16
2.4.3 Public Coordination Working Group (PUBWG) F-16
2.4.4 CAIS Working Group (CAISWG) F-17-
2.4.5 Requirements Working Group (REQWG). F-17

2.5 Open Discussion F-18

F-2

I-'.. - - - - - - --. -. .. o

Minutes
E&V Meeting "
7-8 Dec 83

1. Wednesday, 7 December 1983 -

1.1 Welcome and Introductions

The first 11&V Team meeting began with a welcome to all by Jinny
Castor, followed by an explanation of the registration materials
(E&V Meeting Agenda, 11V Plan, E&V Letters, etc). Jinny then
acknowledged the AFWAL personnel whose efforts had contributed to
setting up the facilities and materials for the meeting: Bonnie
Conover, Angela Crumley, Rich Wallace, and Jimmy Williamson. She
then introduced the technical consultants who had been
contributing to the initial efforts of the E&V Task: Paul Dobbs 41

(General Dynamics), Jack Kramer (Institute for Defense Analyses),
and Tim Lindquist (Virginia Polytechnic Institute). Recognition
was also given to those individuals who were scheduled to speak
during the day, but who had not yet arrived: LCDR Brian Schaar
(Ada Joint Program Office), Maj Izzy Caro (Air Force Wright
Aeronautical Laboratories), and Bob Knapper (IDA). Each team •
member then provided a self-introduction and an overview of the
activities of his/her respective organization.

1.2 Air Force Perspective of 11V

Major Izzy Caro then discussed what the E&V Task meant to the
Avionics Laboratory and to the Avionics community as a whole at
Wright-Patterson Air Force Base. He first expressed his
philosophy as to why E&V is important. He stated that the E&V
technology which is developed will provide to the Air Force and
DoD, for the first time, a capability to quantify and qualify ..

!. software tools to be used in developing weapon systems. Re noted
the history of JOVIAL compilers which resulted in several
compilers now available for selection and use by the Air Force.
There is no quantifiable means for selection of such compilers by
contractors or the Air Force. He stated that for Ada Programing
Support Environments the Air Force will use, not only the Ada 0 -_-1
Language System (ALS) and Ada Integrated Environment (ALE), but
also industry developed Ada Programming Support Environments
(APSEs) and it will be essential to develop the ELV technology to
enable judicious selection.

Major Caro cautioned the 1EV Team against use of a "frontal
assault" in the development of the ELY technology. Re emphasized
the need to develop an initial effective capability in the short
term, with incremental developments and enhancements throughout

F-3

p 0

* ~ **~*>* §-§ -:- 2:;- - ~2- . .~. * * ..-

Minutes 6

Z&V Meeting

7-8 Dec 83

the E6V Task. He stated that program managers need to make a
quan tive assessment of support software tools "now" because
software Is such a major factor in the cost of weapon systems
development.

In closing, Major Caro expressed his personal support, as weil
as the support of the Avionics Laboratory and the Air Force, for
the E&V Task and reemphasized the need for short-tern, as well as
long-term, results from this effort.

1.3 Z&V Task Overview .

Primarily for the benefit of the E&V Team members who were
unfamiliar with the concept of the EIV Task, Jinny Castor
presented an overview of the Task. She stated that the
viewgraphs she was using in her presentation were those used to"-
brief the the E&V Task at the Ada tr-service review in Dallas,
Texas in October, 1983. She explained that the purpose of the
quarterly Ada tri-service reviews is to enable the AJPO and
service representatives to discuss the plans and progress of Ada
related efforts. She told the team members that information on
the E&V Task was presented in considerably more detail in the E&V
Plan, which she would brief later in the day. Her high level
overview of the E&V Task began with an introduction to the
concept of an APSE and the Common APSE Interface Set (CAIS). She
then elaborated on the distinction between "evaluation" and
validation" (evaluation representing a qualitative assessment of

an APSE component for which no objective standard exists, and
validation representing a quantitative assessment of an APSE .
component for which both a metrics capability and a standard
exist). She described the evolution of the UIV Task, which
originated as the result of efforts such as the Ada ValidationI- . I -. .-..I

Organization (AVO), the Kernel APSE (KAPSE) Interface Team
(KIT)/KAPSE Interface Team from Industry and Academia (KITIA) and
its CAIS development, the National Bureau of Standards (MRS) APSE S
Taxonomy, the AFWAL Evaluation Criteria Document, and the
Virginia Polytechnic Institute APSE validation studies. She

described the objectives of the LIV Task: Identifying APSE <
components, classifying APSE components for evaluation or
validation, acquiring and developing tools/techniques for
application of UIV technology, and promoting the use and -
acceptance of the LIV technology. She then described the
relationship of the UIV Task to other Ada related efforts.

Jinny then listed the short term activities (I&V Workshop

F-4

7- 7: C.

Minutes
E&V Meeting 6
7-8 Dec 83 - -

planning, education and training for E&V Team members) and long
term activities (E&V Requirements Document, E&V Reference Manual,
E&V Guidebook, annual E&V Plan, annual E&V Technical Report,
Formal Qualification Testing of the DoD APSEs) for the ElV Team.
She then listed the significant events during the fourth quarter
of fiscal year 83 which lead to Air Force official acceptance as
lead service in the E&V task. She also emphasized what the goals 0
were for the first quarter of fiscal year 84 and indicated that
they had been accomplished.

In conclusion, Jinny elaborated on the goals of the E&V Task:
(1) to provide a capability to determine APSE conformance to the
Common APSE Interface Set; (2) to promote the development of
quality APSEs; (3) to transition Ada and E&V technology to the
organizations represented on the E&V Team; and (4) to transition
E&V technology to DoD and public organizations.

1.4 Ada Joint Program Office b

LCDR Brian Schaar began his presentation by expressing

appreciation for the initialization of the E&V Task and the
* efforts to be undertaken by the representatives on the E&V Team.

He then described the organizational structure of the AJPO and
described the roles of the Director and Service Deputy Directors
at the AJPO. Brian illustrated the relationship of the AJPO to
the Office of the Secretary of Defense. He also provided the
organizational structure of the Computer Software Systems (CSS) . '.

Directorate and described the roles of the personnel in the CSS.

Brian then outlined the AJPO Tasking Philosophy for the
initialization of tasks such as EV. The first step is to

identify a specific need for a task. The second step is to
;. identify a potential leader to provide technical direction to the

*. task. The third step is to develop a formal mechanism for the
*-establishment of the task. He described how those steps were

accomplished for the E&V Task and he then listed three primary
tasks sponsored by the AJPO: lAPSE Interface Team (Navy);
Evaluation & Validation (Air Force); and Methodologies (Army).
Re emphasized that an effort is made to distribute the workload .-. -

among the services and stated that the progress of each of these
- tasks is reported at the quarterly Ada tri-service reviews, at

which AJPO personnel and service representatives have the
opportunity to discuss and influence the plans and progress of . .
each task.

F-5

................*. *.....-

•. . . . - .- ..

Minutes
E&V Meeting .
7-8 Dec 83

1.5 Philosophy of Environments 0

Jack Kramer (IDA) provided a presentation on the philosophy of
environments. Because there were team members who were not. .-....-.

familiar with the details of the Ada Program, Jack indicated that -"°"
this presentation also provided information on the history of the
Ada Program. Jack began his presentation by stating that in 1975 . ,0
many problems were identified as relevant to the development of
software for military missions. Using several charts for
illustration he indicated the escalating costs associated with
software development. These charts also illustrated the decrease
in the percentage of costs due to hardware and the increase in
the percentage of costs due to software. He described how the 6
High Order Language Working Group (HOLWG) was established in 1975
to formulate requirements for a DoD HOL, to evaluate existing
language approaches, and to recommend a minimal set of common
HOLs. The resulting recommendations of the HOLWG were the
development and standardization of a single modern HOL, the use
of integrated programming support environments, and the use of .•.

modern software development practices. Jack stated that the goal
then, and as presently reflected by the Software Technology for
Adapable, Reliable Systems (STARS) program now, was to improve
productivity while achieving greater system reliability and
adaptability.

Jack then listed the characteristics associated with mission
critical computer systems (real time constraints, automatic error
recovery, concurrent control, non-standard input/output, and
large long-lived software programs which require continuous
change). He stated that Ada and the APSE will control software
cost and improve software quality through facilitation of modern
software practices, automation of life-cycle tasks, increased
software sharing, and increased personnel portability.

Jack described the history of the Ada language development and
identified the many problems which will be addressed by
environments (policies, automated tools, procedures, methods.
education, etc.) He listed the goals of the Ada Program
(implement Ada as a standard, promote the adoption of Ada,
provide Ada education and training, and provide support systems)
and indicated that mission applications represented only one
small portion of the software arena. He described the
development of the STONEMAN document and provided a list of tools - -

and components of an APSE. He stated that the cost and quality
of software can be controlled through the application of
engineering disciplines to the life-cycle process, the automation

F-6

- b *..~ .•....

Minutes
E&V Meeting S
7-8 Dec 83

of many life-cycle tasks, and the reusability of software and .
training products.

In closing, Jack stated that the purpose of APSEs is to support
the development and maintenance of embedded computer software
throughout its li:e cycle. .4e enphasizd that it is important to
provide initial APSE capabilities now (such as the ALS, AlE,
ALS/N) which will provide useful foundations on which to build in

the future. He cited the CAIS and data base conventions as

examples on which to build in order to ensure tool cooperation.

He indicated that the E&V Task will also have to provide

evaluation and validation capabilities for the data which is

captured within an APSE.

1.6 KAPSE Interface Team

Jack Kramer presented an overview of the KAPSE Interface Team

(KIT), beginning with the background of the KIT's establishment

and its initial objectives. He stated that the KIT was formed as
a result of a January 1982 tr-service Memorandum of Agreement
which established a Navy led DoD Team chartered to formulate
interface standards: (1) to facilitate movement of tools and data
between APSEs and (2) toward which the AIE, ALS and all other DoD
APSEs could evolve. He described how the KITIA was established
for the purpose of augmenting the level of expertise on the KIT
and providing an industry and academic orientation to the KIT
effort. Jack reviewed the STONEMAN APSE model and indicated that
the STONEMAN document was not sufficient to accomplish the goal
for which the KIT was established because: (1) STONEMAN assumed
portability of tools would be achieved by rehosting a single

* LAPSE; (2) the DoD had already initiated the development of two
." different APSEs (and KAPSEs); (3) industry was developing APSEs;

and (4) the objective of the Ada Program was to reduce cost by
having portability of tools, data bases, and programmers.

Jack described the composition of the KIT, indicating the

primary representation by Navy personnel, with additional
representation from the Air Force, Army, Canadian National

Defence, and the support contractors currently developing the DoD

APSEs. He also described the composition of the KITIA and
reviewed the process by which KITIA members were solicited and

accepted for representation. He stated that the purpose of the
KIT was to propose DOD standards to enable the interoperability
and transportability of data and tools among APSEs and he also
stated that the data base area would have to be addressed by the

F- 7

........-....... "

:'..'.-.'.- ,...... , .o, ..' '%.'- -...... '..... .'-....-.....'... -. , ,.... .. .•..'.....--".. .. '

Minutes
E&V Meeting 0

7-8 Dec 83

E&V effort because of the need to capture data used during the 41
development process for later use during the maintenance phase.

Jack elaborated upon the KIT objectives and accomplishments,
indicating the level of effort which has thus far gone into the . -
development of the CAIS and Requirements and Criteria Document.
He also stated that the E&V Requirements Document would likely be 0
as complex a task for the E&V Team. Jack mentioned that the
Compliance Working Group (COMPWG) of the KIT would provide very
useful information into the E&V Task. He concluded his
presentation by listing the KIT plans, which include: (1) a
completed Requirements and Criteria Document by the end of this
winter; (2) a companion guidelines document for use by 0
tool-builders and LAPSE writers; (3) evolution of the CAIS
document and its submission for standardization; and (4)
completion of all work by 1986.

Jack's presentation drew numerous questions from the E&V Team,
primarily with respect to better understanding of the KAPSE S
concept and the CAIS. While answering these questions Jack
emphasized that the E&V effort will provide valuable input to the
standardization process. He noted the similarity between the
development of the Ada language at the same time the Ada Compiler
Validation Capability (ACVC) was being developed and the
development of the CAIS at the same time the CAIS Validation - S
Capability (CVC) will be developed. The parallel development
process should result in good insight into the semantics of theCAIS through development of its validation capability.

1.7 Ada Compiler Validation -

Bob Knapper (IDA) began his presentation on Ada Validation by
acknowledging the efforts of Tom Probert (IDA), who had
originally been scheduled to give the presentation but who had
been unable to attend. Bob first explained that Ada Compiler
Validation means determining conformance of the Ada Language
Processor to the language specifications of
ANSI/MIL-STD-1815A-1983. At the present time, Ada Compiler
Validation does not measure usability or fitness and does not
guarantee that anomalies will not occur. He indicated that
validation of Ada compilers is necessary in order to enhance
transportability, reusability and reliability of Ada software, to
prevent Ada dialects, and to support the maintenance of the
standard. He stated that there are three major components
involved in Ada compiler validations: (1) the Ada Validation

F-8

>.-.". :~ -:. ,." . . c. .. > :. -." -. K -.'., , ..' "..,., ," .".,.. '.." ."- . .

Minutes
E&V Meeting
7-8 Dec 83

Organization (currently consisting of Bob Knapper and Tom Probert
of IDA); (2) the Ada Compiler Validation Capability (ACVC) test
suite; and (3) the AJPO Director's Advisory (ADA) Board (a
multinational organization which serves as the "ultimate court"
for resolution of language validation issues).

Bob explained that the purpose of the AVO is multifold: (1) to
encourage, measure. and enforce conformance to the Ada language
standard as well as other related standards such as the future
CAIS standard and software tools; (2) to provide technical S
assistance to Implementers; and (3) to provide research in
validation and software quality assurance.

Bob explained that the current ACVC consists of a test suite

(1600 programs indexed to the LRM and the Implementer's Guide),
the Implementers Guide which identifies semantic ramifications in
interaction between language features, and the testing tools
(report package and analysis tools). He explained the six test
classes and reviewed the release schedule for the ACVC. Version
1.4 (due April, 1984) will contain a minimum of 500 additional
test programs. Version 1.5 (due November, 1984) will represent
stabilization of the test suite. At the request of Brian Schaar, -
Bob reviewed the concept of the host-target-operating system
"triple" by which compilers are validated. Bob also explained
that a Fast Reaction Team has been established to resolve fine
points of language issues as they apply for a pending validation,
with a turnaround time of 72 hours. He also stated that the ADA
Board, which will be implemented as a Federal Advisory Committee,
serves in an advisory role to the AJPO in the areas of language
standards, validation, environments and liaison with other
organizations and that the ADA Board will be closely involved
with the CAIS validation activities of E&V.

Bob continued his presentation with a discussion of the basic
assumptions which are made for validation: (1) that Ada language 0

processors are designed to implement ANSI/HIL-STD-1815A Ada (and
not the validation test suite); (2) that it is in the interest of
Ada implementers as well as consumers to implement a quality
product; (3) that market pressure is every bit as powerful,
perhaps more so, than DoD regulations; and (4) that rapid testing
and analysis of results are essential to acceptance of the _
validation requirement. He stated that similar assumptions will
be applicable to CAIS validation.

Bob briefly reviewed the current practices used in validation.
Items which he elaborated upon included the fact that on-site

F-9

.. ". ,o . % -.. • . " , . • . ..

Minutes .
?&V Meeting
7-8 Dec 83

0
validation procedures are usually accomplished within 2-3 days,
with a "pass/fail" verdict obtained by the AVO within an
approximate 2 week period. Validation smmary reports are
available to the public through NTIS. Bob stated that the
current 30 day pre-release period of the ACYC official test suite
will be extended to 60 days with the release of Version 1.5. He
also stated that the validation test suite will be enhanced to
provide additional evaluation capabilities. He emphasized that
no official validation analysis is done on site and he briefly
described the appeals process which is currently used. He
suggested that the current validation procedures used for Ada
compilers would provide very good pointers to the validation
procedures which will be used for the CAIS.

Bob listed the initial problems which had to be overcome by the
AVO: (1) implementer animosity towards the AVO; (2) an
essentially untried test suite; (3) actually enforcing policies
and procedures; and (4) user community pressure. In response ' to
a question on the ROLM compiler validation, Bob indicated that
out of the 1600 tests, approximately 400 tests are implementation -
dependent. Thus one contractor could pass validation without
having passed all of the 1600 tests. Bob explained how an Ada
Implementation Database has been used to record pertinent
information regarding each validation, and he strongly advised
the use of a similar database technique for CAIS Implementation
validations.

Bob listed future plans of the AVO (60 day ACVC pre-release
time, vendors providing after hours access for validation team,
licensing of satellite facilities, and incorporation of
additional tests into the ACVC test suite). He also indicated
that the AVO will participate in EV of environments,
certification of transportability and interoperability, testing
for appropriate optimization, and validation of DIANA. For the
benefit of the E&V Team he reviewed "lessons learned" by the AVO
and listed additional problem areas still to be overcome by the
AVO (resolution of the host-target-operating system triple,
validation of totally embedded systems, and resolution of
multiple error tests).

Following the conclusion of Bob's presentation, numerous
questions were asked regarding the host-target-operating system
triple implications for embedded systems, which Bob clarified.
In answer to a question regarding availability of Ada compilers
In the future, Bob estimated that he expected approximately 5 new
validations within the next 6-9 months.

r-10

"...'.'i "... ' .'., .-.".."."............ "..."..'.......-.......'-'...-...'.........'.,.....",,.,..-,..."..".,.-,"..-..-,._....

Minutes
E&V Meeting
7-8 Dec 83

1.8 E&V Plan

Jinny Castor provided a presentation on the E&V Plan, dated 30
November 1983. She emphasized that the E&V Plan is considered a
"living" document, and will be revised in 1984. However, for the
present, the E&V Plan provides the direction for the activities
of the E&V Team. Chapter 1 provides an introduction which
identifies the objective of the plan and provides background
information which led to the development of the E&V Task.
Chapter 2 lists 11 specific objectives of the E&V Task. In her
review of the objectives, Jinny emphasized that the E&V Team will
not be performing the actual evaluations and validations, but
rather, will be developing the technology by which such
evaluations and validations will be performed. Chapter 3
provides the technical approach to E&V and includes a description
of the APSE concept and the E&V Classification Schema. Chapter 4
provides the management approach to E&V, and lists the various
organizations involved in the management structure. This chapter
also provides descriptions of the various working groups into
which the E&V Team is to be partitioned (Requirements Working
Group (REQWG), Technical Coordination Working Group (TECWG), APSE
Analysts Working Group (APSEWG), CAIS Working Group (CAISWG), and
Public Coordination Working Group (PUBWG)).

Chapter 5 of the E&V Plan describes the relationship of the E&V 5
Task to other organizations and activities. Chapter 6 lists and
describes all of the deliverables anticipated from the E&V Task.
Chapter 7 provides a work breakdown structure. Chapter 8
provides schedules and milestones for the E&V deliverables,
meetings, and contractual efforts. Chapter 9 concludes with a -

list of references used within the document.

Following her "walk through" of the E&V Plan, Jinny requested
the E&V Team members to carefully review the responsibilities of
the worKing groups so that, on the next day, each Team member
could select the working group in which he/she preferred to
participate.

F- 11

"2* ** * ~ *-.

Minutes
E&V Meeting
7-8 Dec 83

1.9 Open Discussion

During the ope n discussion period which followed,
clarifications were madet as to who would participate in the E&V
Workshop (selected E&V Team members and industry/academia-
representatives), who would prepare the minutes of the E&V 0
meetings (Jinny for the first meeting, the PUBWG for all
following meetings), and how to resolve possible working group
selection distributions (allow open selection initially). The
E&V meeting was then adjourned for the day.

F-12

Minutes

E&V Meeting 0
7-8 Dec 83

2. Thursday, 8 December 1983 0

2.1 Announcements/E&V ECLB Accounts Info

Jinny Castor opened the second day portion of the E&V meeting
with a schedule for all E&V meetings in 1984 (7-8 Mar, 6-7 Jun,
5-6 Sep, and 5-6 Dec), all of which will be held at
Wright-Patterson Air Force Base. She then explained that the
primary means of communication among E&V Team members will be via
use of MILNET. She indicated that net accounts for several E&V
Team members had been recently established, and she polled the
Team members to determine those who still needed accourts. She •
informed them that within approximately 1-2 weeks their accounts
would be established. Then she provided a brief tutorial on how
to access the net and how to use Hermes for message
communication.

Jinny then explained that a new account has been established on S

ECLB, EV-INFORMATION, which will provide information to the
public on the activities of the E&V Task. Anyone who has access
to the net may log into EV-INFORMATION (password EV) to read the
available files.

2.2 Common APSE Interface Set (CAIS)

Jack Kramer provided a presentation on the CAIS, and began his
presentation by stating that the purpose of the development of
the CAIS (initiated by a tri-service Memorandum of Agreement) is
to facilitate tool portability and to provide standardization for S
tool interfaces. Jack indicated that acceptance of the CAIS will
be dependent upon tr-service involvement as well as public
involvement in its development. He then summarized the strategy
behind the CAIS development which includes: (1) one standard set;
(2) foundation based upon the ALS and AIE; (3) incremental
development; (4) development of a validation capability (a S
priority item for E&V); (5) DoD maintenance; (6) evolutionary
development; and (7) eventual transition of ALS and AIE.

Jack listed the CAIS characteristics: (1) simple, uniform
underlying model; (2) noninterference with implementation
strategies; (3) smooth integration with features of Ada; (4) S
flexible foundation for configuration management; and (5) merging
of modern operating system and database management system ideas.
He then provided the names (and organizations) of members of the

F-13

. . ,. -

...
.................................. t .r,... --.- .A-

Minutes -Z
E&V Meeting 0
7-8 Dec 83

KIT/KITIA CAIS Working Group (CAISWG), pointing out that from the S
very onset, both Intermetrics (the AIE contractor) and SofTech
(the ALS contractor) were participants. He listed the main areas " .
of CAIS 1.0 (structures, files, processes, and devices) and
stated that there are still deferred items such as configuration
management, database management, multi-level security, and
host-target relationships.

Jack proceeded to describe the concept of a node, indicating
that the CAIS distinguishes between file nodes, device nodes,
process nodes, and structural nodes. He included a graph which
illustrated the node model concept. Then he went into detail on
the concept of the process node. He stated that a process node S
represents the execution of an Ada program and all of its tasks
and that a process node provides a common model for access to
resources required to support the program execution. He also
said that the process model supports the concurrent execution of
Ada programs. Jack indicated that the time allocated for his
presentation precluded a more detailed discussion of the CAIS. S
However, he offerred to provide such detailed discussions at
future E&V meetings.

Jack concluded his presentation with a schedule of the CAIS
development, emphasizing that the current CAIS would be improved -
as much as possible before being submitted for standardization in S
January, 1985. The CAIS would continue to be developed, with
MIL-STD Version 2 available in January, 1987. Following Jack's
presentation, one team member noted that feedback received from
certain users and implementers indicated opposition to -..
standardization of the CAIS because of run-time issues associated
with target systems. The proposal was that a standard set of S
packages be developed for such run-time support. Jack also
responded to an additional team member question on how tools
actually reference CAIS packages.

2.3 E&V Working Group Review/Selection

Jinny Castor outlined the procedures by which documents are --.-

developed within the E&V Task. The initial phases are restricted
to E&V Team members only: (1) draft document prepared within
designated working group; (2) review of the draft document by the
entire E&V Team; and (3) revision/refinement of the document by -

the designated working group. Once the document has been
approved by the E&V Team it must then receive final approval from
the E&V Team Chairperson and the AJPO Point of Contact. After .'-.

F-14

7 -

* ...--. " "r

Minutes S
E&V Meeting

7-8 Dec 83

final approval has been received, the document (if available in
file format) will be added to the EV-INFORMATION directory. The.-
document or article (if appropriate) may also be submitted for
publication once final approval has been obtained. All documents :.K'-
will be included within the annual B&V Public Report. A team
member questioned whether it would be appropriate to include his
organizational review of a draft document during the initial
phase. The agreed upon answer was that such technical
contributions were welcome, provided the draft document were
treated with the sensitivity specified (i.e, no further
distribution until final approval received).

During this discussion, Jinny clarified an issue which a team
member had brought to her attention. There appeared to be a
discrepancy between the AJPO initiated letter of Jun 83, which
requested a tr-service management committee to supervise the
efforts of the E&V Task. Jinny explained that at a subsequent
Ada tri-service review, the service representatives opposed the .
use of a management committee, claiming that such representatives
did not qualify as service managerial policy representatives.
The E&V Task was designated as technical in nature, and required
only technical direction from a Chairperson. Management issues
would be addressed by the service representatives at the Ada
tri-service reviews. .

Jinny then reviewed the responsibilities of the five designated
working groups and then polled all of the E&V team members as to
which working group each member preferred to contribute.
Following the selection of working groups, Jinny provided a list
of responsibilities which would be assumed by each working group
Chairperson: (1) representing the working group to the E&V Team;
(2) serving as focal point for the working group activities; (3) . -

conducting the working group sessions; and (4) coordinating all
working group activities. She stated that the role of the
working group Vice-Chairperson would be to assume the
responsibilities of the Chairperson in his/her absence. Before
the Team dispersed into the selected working groups, she - -.
requested that, following the working group meetings, each
working group Chairperson report to the E&V Team the following
information: (1) name of the Chairperson and Vice-Chairperson;
(2) name of all working group members; (3) planned activities of
the working group (action items to be accomplished by the next

* E&V Team meeting and anticipated presentations for the next B&V
Team meeting); and (4) any other pertinent information. The E&V

.* Team members then began to meet in separate working group
sessions.

F-15

S o °

L-

Minutes
E&V Meeting

7-8 Dec 83

0

2.4 Working Group Reports

2.4.1 Technical Coordination Working Group (TZCWG)

The TECWG report was given by Jimmy Williamson (Chairperson)
who indicated that the Vice-Chairperson was Joe Genlot and that
there were no other members currently on the TECWG. Jimmy stated
that the activities planned for the TECWG were: (1) to perform a
literature search to identify previous related technical efforts
from which the E&V task could benefit; (2) to identify ongoing
related technical efforts; and (3) to get "up-to-speed" on these
related efforts. He indicated that the anticipated presentations
for the Mar 84 meeting would include: (1) results of the
literature search; and (2) identification of relevant areas.

2.4.2 APSE Analalyat Working Group (APSEWG)
6.

The APSEWG report was given by Gina Burt (Chairperson) who
indicated that the Vice-Chairperson was Angela Crumley and that
the other members of the team included Georgeanne Chitwood,
Dorothy John, Terry Humphrey, Liz Kean, and Rich Wallace. Gina
stated that the activities planned for the APSEWG were: (1) to
identify candidate APSEs for evaluation; (2) to create criteria
for selecting certain APSEs for evaluation; and (3) to review
documents for background information (such as STONEMAN, the AFWAL
ROLM Evaluation Criteria Document, and the General Dynamics
Updqte to the AFWAL ROLM Evaluation Criteria Document). She .
stated that the anticipated presentations for the Mar 84 meeting .
would include presentations on the following systems: ALS, AE,"
ROLM, and Telesoft.

2.4.3 Public Coordination Working Group (PUBDG)

The PUBWG report was given by Chris Anderson (Chairperson) who
stated that the Vice-Chairperson was Don Jennings and that the
other member of the PUBWG was Pat Maher. She stated that the
planned activities for the PUBWG by the Mar 84 meeting Included
the following: (1) initiation of the development of an E&V
Project Reference List (using the documents provided at this
meeting and including a brief synopsis of each); (2)
establishment of procedures for team members to contribute to the
ZSV Project Reference List; (3) identification of professional
organizations and journals; (4) establishment of procedures for

F-16

. . .."...,.- o

-. . - - .-. - -. -. - -*. -. , .-- t,. ,"

Minutes S
E V Meeting
7-8 Dec 83

recording minutes and action items; (5) preparation of text for
existing E&V viewgraphs for public presentations; (6) initiation
of the development of a public coordination document (format to
be established by Mar); and (7) establishment of procedures for
team members to submit status reports for publication.

2.4.4 CAIS Working Group (CAISWG)

The CAISWG report was given by Nelson Estes (Chairperson) who
stated that the Vice-Chairperson was Dave Fautheree and that the
other member of the working group was Bob Harrell. In addition, •
Tim Lindquist was serving as technical consultant to the group.
Nelson indicated that the first goal of the group was to try to
understand the CAIS as it currently exists. In order to do so,
the group would obtain a copy of the CAIS slides used during the
CAIS public review in Sep 83 and determine what is and is not
clear. That determination would then be funneled back to the
KIT/KITIA. The CAISWG would also examine the current testing
procedures used on the ALS and other systems in CAIS related
areas. In particular, the CAISWG was interested in how the UNIX
system is so easily transported from one system to another. The
CAISWG is also responsible for the development of the Validation
Procedures Document. The CAISWG members also planned to develop
a check list of items to look for when the E&V Team eventually
goes out for a contractual effort to develop the CAIS Validation
Capability (CVC). Such items would be based upon the current
CAIS 1.1 capabilities, expanded CAIS areas, and APSE component
areas which represent an expansion to those currently provided in
the NBS APSE Taxonomy Document.

[1 2.4.5 Requirements Working Group (REQWG)

The REQWG report was given by Dan Burton (Chairperson) who
stated that the Vice-Chairperson was John Miller and that the 0
additional team members included Greg Bettice, Sam Dugan, Rich .
Fleming, and John Prentice. In addition, Jack Kramer was serving
as technical consultant to this group. Dan stated that the
planned activities for the REQWG included: (1) identification of

* the relationship of the E&V requirements to STONEMAN and
establishment of contact with the KIT/KITIA Stoneman revision
activity; (2) scoping the size of the E&V effort by getting an
overall picture of the E&V Task; and (3) identifying an approach
to development of the Requirements Document by increments. Dan
also stated that the REQWG presentation at the Mar 84 meeting

F-,17

.......................................
.. ",",

Minutes S

E&V Meeting
7-8 Dec 83

would provide the overall approach to development of the
Requirements Document, with emphasis on the first increment.

2.5 Open Discussion

Jinny Castor explained to the E&V Team members that AFWAL has
been assisting the Army (CENTACS at Fort Monmouth) in testing of
the ALS and has thus far been the only Air Force organization
with access to the ALS. However, based upon agreement with the
Army, AFWAL is allowed to distribute the ALS to other Air Force
organizations, provided such organizations are assisting AFWAL in
its testing procedures. With this background information, Jinny
then stated that Air Force organizations represented on the E&V
Team could obtain copies of the ALS from AFWAL. She stated that
in order to obtain a copy of the ALS the organization must send
an official request to her stating the following: (1) that the
organization is represented on the E&V Team; (2) that the 7J .
organization is requesting the ALS for the purpose of providing
testing support only (i.e., no production development); and (3)
that the organization will not release its copy of the ALS to a
third party. In response to that request, Jinny will send a
letter which specifies the requirements for the tapes to be sent
to AFWAL.

The discussion of the ALS requirements was then expanded upon
by Rich Wallace who stated that the ALS runs on VAX/VMS Version
3.1. It requires 4 megabytes of memory and at least 200
megabytes of additional storage. The ALS installed without any
database requires 10 megabytes, and with the testing database
requres 80 megabytes. The ALS requires space on both the VMS
system disk and a user disk (which may create problems for
potential users).

Jinny then provided information on the scheduled E&V Workshop
to be held in Airlie, Virginia 2-6 Apr 84. She indicated that
reservations had been made for 25 individuals, approxinately 10
of which would be E&V Team members/consultants. She said that a
CBD article would be published to solicit position papers and
candidates from industry and academia. The working group chairs
were invited to participate (registration fee approximately $140
to cover meals and facilities, and room rates of approximately
$32 per night). She requested that all working group chairs
respond by the Mar 84 meeting as to whether or not they would
attend, and if not, the vice-chair would have the opportunity to ...

attend.

F-1 8

'7..........-.-..

.. o. .-... -
.

M.. nutes
EiV Meeting 0
7-8 Dec 83

During the final discussion, the question was asked as to
whether or not E&V meetings would be held in conjunction with -.
AdaJUG/AdaTEC meetings. Jinny stated that all E&V meetings would
be held at Wright-Patterson Air Force Base and that all Air Force
organizations had made the commitment to 4 TDYs per year for
participation In the E&V Task. Brian Schaar then expanded upon
this discussion, stating that E&V was under the auspices of the
AJPO, and that although E&V coordination with professional
organizations was encouraged, no direction to the E&V Task was
given by any other than AJPO. Brian also emphasized the need for
close coordination between E&V and KIT/KITIA. Brian and Jinny
agreed that a meeting with Tricia Oberndorf (KIT Chairperson)
would be beneficial to establish the means by which such •
coordination could be accomplished.

The first E&V meeting was then adjourned.

F-19

S

F" nute s
E&V Meeting

7-8 Dec 83

List of Attendees

Anderson, Chris (AFATL/DLMM)
Bettice, Greg (NAC)
Burt, Gina (AFALC/PTEC)
Burton, Dan (ESD/ALL)
Castor, Jinny (AFWAL/AAAF)
Chitwood, Georgeanne (ASD/ADOL)
Crumley, Angela (AFWAL/AAAF-2)
Dobbs, Paul (General Dynamics)
Dugan, Sam (SA-ALC/MMfEC)
Estes, Nelson (ASD-AFALCIAXTS)
Fautheree, Dave (AFCMD/KRS)
Fleming, Rich (Aerospace Corp)
Genlot, Joe (CENTACS)
Harrell, Bob (AFCCPC/SKXX)

Humphrey, Terry (NASA)
Jennings, Don (OC-ALC/MMECE)
John, Dorothy (AFWALIAAAF-I)
Kean, Liz (RADC/COES)
Knapper, Bob (IDA)
Kramer, Jack (IDA)
Lindquist, Tim (VPI)
Maher, Pat (OO-ALC/HNECF)
Miller, John (SN-ALC/MMEHP)
Prentice, John (AFHRL/IDC)
Schaar, Brian (AJPO)
Wallace, Rich (AFWAL/AAAF-2)

Williamson, Jimmy (AFWAL/AAAF-2)

F- 20

_= * m l . - -.. .-

iiki

70

APPENDIX G

MINUTES 0

of the

.

EVALUAT'ION & VALIDATION (E&V) MEETING

7 - 8 MARCH 1984

Wright-Patterson Air Force Base, Ohio

G-1SK..

. -. . -..

Minutes
E&V Meeting

7-8 Mar 84

Table of Contents

1. Wednesday, 7 March 1984......................G-3 .
1.1 Welcome and Introductions....................G-3
1.1.1 E&V KIT/KITIA Coordination Strategy..............G-3
1.2 KIT/KITIA Status- 3
1.3 Toward Specification Techniques for CAS G-5
1.4 Software Test & Evaluation Project (STEP)- 7

1.4.1 Background...........................G-7 0
1.4.2 STEP Approach.........................G-8
1.4.3 State-of-the-Art Findings....................-8
1.4.4 State-of-the-Art Practice Findings- 9
1.4.5 Recommendations........................G-9
1.4.6 STEP and the E&V Effort....................G-9
L.4.7 Improvements......... G-10
1.5 E&V Working Group Presentation..................G-10
1.5.1 REQWG Report........................G-10
1.5.2 TECWG Report.........................-10
1.5.3 PUBWG Report........................G-10

1.5.4 CAISWG Report............................-11

1.5.5 APSEWG Report..........................-11
1.5.5.1 ALS..........................G-11
1.5.5.2 ALS/N............................G-12
1.5.5.3 AE.............................-12
1.5.5.4 ROLM Ada Work Environment.................-12
1.5.5.5 Telesoft Ada Programming Support Environment.- 13

1.6 Open Discussion..........................-13

2. Thursday, 8 March 1984.......................-14

2.1 Announcements/1)iscussion....................-14
2.2 Working Group Status Reports.................-14
2.2.1 PUBWG Status Report.....................-14
2.2.2 RECWG Status Report.......................-14
2.2.3 TECWG Status Report.........................-14
2.2.4 CAISWG Status Report.......................-15
2.2.5 APSEWO Status Report.......................-15
2.3 Open Discussion........................-15

0-2

Minutes
E&V Meeting
7-8 Mar 84

1. Wednesday, 7 March 1984 J

1.1 Welcome and Introductions

The E&V meeting began with a welcome by the Chairperson, Jinny
Castor, followed by an announcement of agenda changes. The list of E&V
Team members with addresses and telephone numbers was circulated in the
audience for updating purposes. The minutes of the first meeting were
approved and are available to the public in the EV-Information
directory.

The format for the minutes has been reviewed and finalized.
Attendees seated at the head table were introduced: LCDR Brian Schaar
(Ada Joint Program Office), Kevin Chadwick (Canadian National Defense
Headquarters), Maj Izzy Caro (Air Force Wright Aeronautical
Lzboratories), Jack Kramer (Institute for Defense Analyses), Tric'a
Oberndorf (Chairperson of KAPSE Interface Team), Tim Lindquist
(Virginia Polytechnic Institute), Betsy Bailey (Institute for Defense
Anal.yses) and Ronnie Martin (Georgia Institute of Technology). Each
Team member then provided a brief self-introduction.

Representatives between the KIT and the E&V Team were identified:
Jinny Castor, Kevin Chadwick, Liz Kean, Jack Kramer, Tim Lindquist,
Lucas Maglieri, Tricia Oberndorf, Brian Schaar and Guy Taylor.

1.1.1 E&V KIT/KITIA Coordination Strategy

Jinny Castor and Tricia Oberndorf have developed a coordination
strategy between the E&V and KIT/KITIA teams. Jinny Castor will be
presenting Quarterly E&V Status Reports at the KIT and KITIA meetings.Tricia Oberndorf or her representative will be presenting the status of

the KIT and KITIA at the E&V meetings. The common representatives
between teams will serve as channels of communication for issues or
questions that may arise.

1.2 KIT/KITIA Status

Tricia Oberndorf presented background information and the current
status of the KIT/KITIA. The KIT was established by a Tri-Service

*Memorandum of Agreement in January 1982. The Navy was designated as the ..
lead organization. The objective of this Team is to establish common
interfaces, so that tools and data bases can be shared between Ada
Programming Support Environments (APSEs). An auxiliary team with
members from industry and academia was established, the KIT from
1ndustry/Academia IKITIA), to provide additional expertise. Currently
there are 30 members of the KIT and 30 members of the KITIA.

G-.3
a -3 T[[i'll.21.

Minutes
E&V Meeting
7-8 Mar 84

0

Sharing tools and data bases impiles tools must be interoperable
and transportable. Transportability is defined as the ability of a tool
to be moved from one APSE to another without reprogramming and to
maintain the identical functionality. Since 100% transportability is
not possible, transportability is medsured by the degree in which it
can be achieved without tool reprogramming. Interoperability is defined
as the ability of APSEs to share data bases, including objects and
their relationships, without modification. Again, interoperability
cannot be 100% achieved. It is measured by the degree to which it can
be accomplished without data base modification.

KIT/KITIA developing products include the Common APSE Interface
Set (CAIS). The CAIS is a set of interfaces. CAIS version 1.1 is
predoninately on the KAPSE level focusing on the transportability
issue. Interoperability will be addressed in later CAIS versions. It is
anticlpated that the CAIS will eventually become a Mil-Standard.

Other important KIT/KITIA developing products include the
requirements and design criteria (RAC) document. The document will
contain the requirements to which the CAIS version 2.0 (the final CAIS)
must comply. The Guideline and Conventions (GAC) document will provide
"I&T Suggestions" to future KAPSE implementors and tool writers. The
KIT/KITIA Public Report, published approximately every six months, is "
available through NTIS. These reports provide a comprehensive update
for the reporting period.

The KIT/KITIA rchedule is as follows: RAC - approved baseline
(April 84?; CAIS - version 1.1 (Sep 83), version 1.2 (April 84),
version 1.3 (Nov 84), Mil-STD 1 (Jan 85), initiate version 2.0 (Jan .
85), version 2.0 draft (Jan 86), Mil-STD 2 (Jan 87); GAC - initiate
draft (Jan 85), final (Jan 67); Public Reports - approximately every
six months.

Another member of both the E&V Team (alternate member) and KIT was
noted: Larry Lindley from the Naval Avionics Center. S

A proposal has been made to the Tri-Service Review that CAIS
version 2.0 be pursued in a dual mcde (i.e., parallel competitive
procurements) culminating in a "fly-off." To date, this proposal has
not been approved or disapproved.

. . . . • .

G-4" -. -. -

" ' " - - - .. " ' ": : " " " - - - - . . ." - " " .'', a = =a - . - .%. ' '

Minutes
E&V Meeting

7-8 Mar 84

There are seven named KIT/KITIA working groups: CAISWG - CAIS
development; STONEWG - STONEMAN refinement and strengthening; DEFWG .
KIT/KITIA glossary development; STANDWG - existing standards
examination, and standardization process guidance; COMPWG - CAIS
semantic definition facilitating validation; RACWG - development of the
RAC and an accompanying rationale; GACWG - development of the GAC.

1.3 Toward a Specification Technique for CAIS

Dr. Tim Lindquist, VPI, presented an overview of an effort
sponsored by the AJPO through the office of Naval Research Information
Sciences Division. The researchers include Dr. Lindquist, Dr. D. G.
Kafura and Mr. J. Facemire. The effort involves using an abstract
machine approach in specifying the CAIS.

In order to validate a CAIS and in order for tool writers to
interface with the CAIS, the CAIS specification must be precise (i.e.,

complete, consistent, concise, and unambiguous), usable by specifiers,
implementors and users, and must lead to some type of validation
mechanism.

Currently the CAIS specification consists of package -

specifications for the types and operations that make up the CAIS and
associated commentary. A commentary excerpt from the Process Section of
the CAIS was presented to illustrate a few problems with this method of
CAIS specification.

Due to incomplete and inconsistent lexicographic phrasing in the
sample commentary, a CAIS validator would have great difficulty in
trying to construct test, cases. The example pointed out the need for a
more precise specification to understand the semantics of the CAIS.
From the current CAIS specification, it would be extremely difficult to
develop a validation suite ,hat could distinguish between different
implementations of CAIS without the validator interpreting semantics.

Dr. Lindquist then presented four aspects considered essential in
specifying software products (and the CAIS in particular): (1) Syntax -
adequately described in the CAIS using package specifications; (2)
Functionality - functionality of operations. (3) Protocols and Hidden
Interfaces - the interface between the operations. These are the keys
that tell the validator how to construct a validation suite and tell
the user how to use the CAIS. (4) Limits - pragmatic limits on
implementations.

G- 5

I@

• . . . • .

• .ii.. .. o. .' ?j.... ... ,. i.... .? ...- .. . •...""

Minutes
E&V Meeting

7-8 War 84

Dr. Lindquist then explained in more detail the aspects considered
essential to the CAIS specification and outlined a specification
mechanism that incorporates all of these aspects, thus facilitating the
validation process. S

Since the syntax aspect is currently well described in the CAIS,
Dr. Lindquist began with the functionality aspect. Several approaches
to describing CAIS functionality were presented. The formal approach
provides a complete method for describing semantics as long as there
exists an operational definition. Since the CAIS has no operational S
definition, the formal approach to describing functionality must be
ruled out.

The commentary approach to describing functionality is currently
used in the CAIS specificaticon. This approach has the advantage of ease
of writing but has serious shortcomings due to resulting inconsistent 0
and incomplete descriptions which make validation difficult.

Another approach to describing CAIS functionality is by example.
The public review overheads provide an example of this approach.

The last approach to. describing CAIS functionality is the abstract S
machine method. This is the subject of Dr. Lindquist's research and the
remainder of his talk was devoted to it. An abstract machine includes a
storage environment, a set of instructions and a processor. A processor
interprets an instruction in the context of a storage environment. To
fully define an abstract machine that can be used to define the
functionality of the CAIS, the storage, instructions and processor must S
be fully defined. In his abstract machine model, for storage any kind
of Ada object is allowed. An extension of Ada's data facilities is
defined to declare axiomatic objects so that the abstract machine can
store objects of axiomatic types. Instructions that the abstract
machine recognizes are Ada language instructions. Thus, the processor
for the abstract machine is able to interpret Ada instructions and
extended Ada instructions. Ada is a good choice for an abstract machine
description of the CAIS due to its richness, thorough definition and
compatibility with the problem environment. The specification does not
have to be executable but it must be readable -- one of Ada's strong
points.

Several abstract machine examples based on the current version of
the CAIS were presented.

G-6 •

0

Minutes
E&V Meeting
7-8 Mar 84

A question from the audience brought out the point that the
KIT/KITIA charter focuses on Stoneman - like APSEs and not target
environments. The AJPO is reviewing the need for runtime environment
standardization but KIT/KITIA currently is not addressing this issue.

Besides functionality, other aspects to consider in the 0
specification of the CAIS include protocols and hidden interfaces. An
interaction between a CAIS operation and a tool is defined as a hidden
interface. An interaction between two different CAIS operations is
derined as a protocol. Two types of CAIS protocols were identified:
Uses Hierarchy - CAIS functions needed by CAIS operations. The abstract,
machine description makes these explicit; Use of Underlying Model - B
dl!ferent CAIS facilities can interact with each other by the data that
they produce in this underlying model of an implementation.

In order to explain hidden interfaces properly, Dr. Lindquist went,
back to the CAIS. The CAlS, itself, is an interface. It has two
interfaces: above and below. The above interface is with the tools. The S
implementation of the CAIS also has an interface below to the
underlying operating system, hardware, etc. Below interfaces must, be
specified as well as the above ones in order to be able to validate the
CAIS. These below interfaces are called hidden because they aren't
direct.

The last aspect that is essential to properly specifying the CAIS
is pragmatic limits. There are two types of limits: use limits and
value limits. Use limits refer to a tool's use of a CAIS facility.
Value limits refer to the parameters that are passed to CAIS
operations. In order to validate, the limits must be specified in an
amenable way to validation (e.g., use Ada package STANDARD concept). As
of now at, VPI, there exists a preliminary set of abstract programs that
describes all of the CAIS node model. Refinement of these programs is
continuing.

1.4 Software Test and Evaluation Project (STEP)

Ronnie Martin, Georaia Institute of Technology, presented an
overview of the STEP effort.

1.4.1 Background

STEP was initiated by the Director Defense Test and Evaluation •
iDDT&E) in 1981. The primary goal of STEP is to improve the practice of
test and evaluation for mission critical software. Current STEP efforts
are concentrated in three areas: development of policy and standards;
insertion of existing technology; and coordination with related ."-

efforts.

S:)

m ;- 7

Minutes
E&V Meeting
7-8 Mar 84

The primary function of DDT&E is to assess the maturity of major 0
systems under development and provide recommendations to the DSARC as
to whether or not the systems should be allowed to pass the DSARC
milestones. The criticality of software to the successful
accomplishment of DoD missions and therefore to the acquisition
decision making process is increasing. The imbalances in the way
hardware and software are developed and tested have been documented. In 0
1974, the Defense Science Board produced a report stating that in
hardware development, the hardware was carefully developed and tested
with many milestones. This was not the case in software developments.
Further aggravating the lack of milestones is the fact that testing is
expensive and therefore avoided. However, the escalation in the cost of 0
finding and fixing software errors as time passes intensifies the need
for effective "up-front" testing. Finally, although DoDD 5000.3 (Test &
Evaluation) has a specific section addressing software test and
evaluation, it is vague and inadequate. It was for these reasons that
STEP was established.

1.4.2 STEP Approach .

The first two years of the STEP project were spent gathering and
analyzinq information to determine the feasibility of improving policy
at the DoD level. This feasibility study resulted in twenty
recommendations. One thrust of the recommendations was in the area of
test planning. It was recommended that tests be planned to form a chain
beginning at the system level and continuing through the unit or module
level such that each level of testing relates to and supports the
previous level. Another thrust of the recommendations was to focus
software testing on critical software components in order to use scarce
resources in the most effective manner possible. Other recommendations
addressed the need to insert available software testing technology into
practice.

1.4.3 State-of-the-Art Findings

There are two categories of software testing methodology: static
analysis and dynamic analysis. Static analysis of software is that _.
analysis that does not require the execution of code (e.g., design
walkthroughs, structured design reviews). Dynamic analysis of software I
is that analysis that does require the execution of code.

Ronnie Martin outlined several testing techniques along with the
advantages, disadvantages and the size of the software (small, medium,
or large) to which they could be applied. In general, the static
methods were found to be effective in terms of locating errors in the
design and code. Most dynamic methods require the use of automated
tools.

G-8

r. -- --- - , _,- - ,_ . r v . r ,

Minutes
E&V Meeting
7-8 Mar 84

1.4.4 State-of-the-Art Practice Findings

Interviews were conducted at organizations in all three services
and Defense contractor facilities involved in mission critical software
testing. One finding was that the military acquisition organizations
seemed to have complete faith in their contractors. Reasons for this 0
include a lack of manpower, and a lack of software expertise. Another
finding was that after the critical design review (CDR) occurs, the
next software milestone is acceptance testing. More milestones are
necessary for the military to track the software development process.
Another findinq indicated that contractors put complete faith in the
programmers. Audit procedures to check conformance to organizational •
standards for software development and testing rarely exist.

In order to determine the state-of-practice regarding testing
tools, information was requested from identified contacts for 21B tools
which were found in open literature. Only 42 responses were received.
The findings were as follows: Most tools are tailored to specific S
projects. The amount of money required to package a tool for commercial
use can be nine times that of the development cost, thus, discouraging
this activity. Few tools are suitable for mission critical
applications. No cost benefit, studies exist to justify the use of
testing tools to management. Few comparative studies exist for testing
tools. 0

1.4.5 Recommendations

Based on the study results, the following recommendations were
made: modify DoDD 5000.3 to require system level planning for mission
critical software, specify the required level of tests, and require
test reporting; conduct tests throughout the lifecycle; develop
requirements document and test plan document at the beginning of the
program; interpret test results in terms of system objectives; define
and meet specified evaluation criteria; and balance risk of hardware
with software. Other recommendations were concerned with initiating a
technology upgrade and improving the application of existing •
technology.

1.4.6 STEP and the E&V Effort

Certain issues in the Test & Evaluation Master Plan (TEMP)
directly relate to what is being a'Idressed in the E&V effort. -•
Evaluation & Validation of testing tools will help DDT&E better
determine the risk of using these tools for system development. Also,
STEP is developing the requirements for an APSE test environment. This
environment will need to be evaluated and validated.

. "9

.-9*" . .

Minutes
E&V Meeting
7-8 Mar 84

1.4.7 Improvements

DDT&E is already following a draft STEP checklist in evaluating
software in system acquisitions. The STEP Phases I and II Final Reports 0
are available through DTIC or through the Georgia Institute of
Technology at a cost of $50.00.

1.5 E&V Working Group Presentations

1.5.1 REQWG Report 0

The Requirements Working Group (REQWG) report was presented by
Major Dan Burton, the Chairperson. The REQWG approach is in three
steps: develop an outline for the requirements document; fully develop
several sections of the document that are most familiar to the working
group members; develop the remaining sections of the documents. Several S
candidate sections for the E&V Requirements Document were listed: E&V
Product Quality, Specific APSE Tool Requirements, Usability of E&V, and
APSE Considerations.

1.5.2 TECWG Report

The Technical Working Group (TECWG) report was presented by Jimmy
Williamson, the Chairperson. The TECWG performed a literature search
for related E&V documents. No previous related efforts were identified. " "
Several potentially E&V related ongoing efforts have been identified:
Software Test and Evaluation project (STEP), STARS Measurement project.,
STARS Research in Software Reusability, Communications Software P 4
Technology Program iCSTP), Common APSE Interface Set (CAIS), Ada
Language System (ALS), and Ada Integrated Environment (AIE). A proposed
TECWG Strategy Document format was presented for review by the team.

1.5.3 PUBWG Report

The Public Coordination Working Group (PUBWG) report was presented
by Chris Anderson, the Chairperson. A strawman document of the Public
Coordination Strategy Document (final due in June), was distributed to
the team for review and comment.

G

G- 10 "'
S

Minutes
E&V Meeting
7-8 Mar 84

6

The draft Project Reference List was also distributed. Several
mechanisms for transitioning E&V technology to the public were
presented: briefings, publications, E&V Quarterly Report,
EV-Information net directory, Project Reference List, and the E&V
Public Report. Several publications and organizations were identified
as candidates for E&V technology presentations. A recommendation was
made to brief E&V status at every AdaJUG and AdaTEC meeting. The E&V
Chairperson tasked the team to review the PUBWG strawman document by 30
March.

1.5.4 CAISWG Report

The CAIS Working Group (CAISWG) report was presented by Nelson
Estes, the Chairperson. A brief overview of the CAIS was given. Nelson
pointed out that the current CAIS guarantees transportability, not
interoperability of tools, but that this will change as the CAIS
matures.

Tricia Oberndorf pointed out that the name CAIS, Common APSE
Interface Set was chosen very carefully. Any and all standardized
levels in the APSE that affect interoperability and transportability
II&T) are potential parts of the CAIS (e.g., if DIANA is standardized,
it could become part of the CAIS).

1.5.5 APSEWG Report

The APSE Working Group (APSEWG) Chairperson, Lt Rick Long,
introduced five APSEWG speakers.

1.5.5.1 ALS

The Ada Language System (ALS), developed by SofTech for the Army,
was discussed by Rich Wallace. Rich presented his perception of the ALS
implementation. He pointed out that it diverges somewhat from the
Stoneman APSE. According to Rich, the ALS has been implemented on a
shaft and base of VMS, thus it is not a true independent environment.
Rather, it is an application program on VMS. A list of ALS tools was
discussed. ALS tools can be grouped into the following categories:
Advanced Configuration Control (not available yet), Configuration
Control, Command Language Processor, Data Base Manager, Display and
File Administrator. The current version of the ALS uses the DEC VAX-11
EDT text editor. SofTech can distribute this under a license agreement
with DEC. Currently, tools are written in Ada '81. Conversion to Ada
'83 is scheduled for completion in July 1984. Public release date for
the ALS is December 1984.

G- 11-
-- ° . .

Minutes
E&V Meeting
7-8 Mar 84

1.5.5.2 ALS/N

The Navy's version of the ALS was presented by Guy Taylor. The
Navy is planning to build Navy unique tools to add to the ALS. -

Currently, proposed targets include the AN/UYK-44 (16-bits), AN/AYK-14 •
(16-bits), and AN/UYK-43 (32-bits). Due to funding problems, the ALS/N
has been indefinitely postponed with the exception of the AN/UYK-44.
SofTech is performing the retargeting effort. The program performance
specification and program design specification have been delivered. The
code generator, runtime library, loader, importer and exporter will be
delivered in April 1985. 0

1.5.5.3 AIE

The Ada Integrated Environment (AIE), being developed by
Intermetrics for the Air Force, was presented by Liz Kean. Due to
funding problems, work was stopped on all tools except the compiler. 0
The compiler's host and target is the IBM 4341 using the UTS operating
system. The compiler uses a modified version of the Tartan Laboratory's
DIANA. No date has been set for resuming other tool development. When
it is resumed, the following components are planned as part of the
environment: KAPSE, database manager, Editor, Debugger, Program Library
Manager, Linker, Command Language Processor, and Compiler. When the
APSE effort resumes, the compiler will be rehosted on the KAPSE. The
Ada compiler on UTS is scheduled for delivery in January 1985.

1.5.5.4 ROLM Ada Work Environment

The ROLM Ada Work Environment was presented by Georgeanne 0
Chitwood. The Ada Work Environment is a complete configuration that
includes hardware, software and support. The hardware centers on the
32-bit ECLIPSE MV/Family. The Ada compiler accepts the
ANSI/Mil-Std-1815A - 1983 version of the language. The Environment also
includes an Ada Programming environment which includes: a "KAPSE" (ROLM
has plans to interface to CAIS when it is fully defined), a user
interface (command language interpretor), data base control tools,
application development tools, target development tools and libraries
of packaqes. The Language Control Facility (LCF) at Wright-Patterson
has a ROLM Environment with 8 terminals. Georgeanne pointed out that
Ada training is not being performed by the LCF at this time.

G-12

. *

Minutes "
1 1

E&V Meeting
7-8 Mar 84

1.5.5.5 Telesoft Ada Programming Support Environments

The Telesoft Environments were presented by Terry Humphrey. The
current systems operate on the VAX 11/780, MC68000, IBM 370, INT 370, - 4
IBM PC or XT, and INT 86. Support tools include: KAPSE, Ada compiler S
(currently not full Ada, generates P-code), linker/executor, runtime
library, text I/O, screen editor, embedded system kit (helps user to
customize runtime level on MC68000), and computer-based learning
materials. Telesoft's new compiler (certified, with the first
validation scheduled for mid-March) will generate native code for the
VAX 11/780, IBM 370, MC68000, and INTEL 8086/88. Host and targets in S
all cases are the same.

1.6 Open Discussion

During the open discussion, various issues were discussed .
including TAC registration, ECLB accounts for new members, request for
team input to E&V presentations, and AFWAL ROLM System availability to
Wright-Patterson E&V team members for E&V related activities.

Industry responses to the E&V Workshop announcement in the CBD
were received. Invitations to 21 industry representatives have been
sent. The Workshop will be organized into three working groups: 0
Requirements - Tim Lindquist, Chairperson; Reference Manual - Jack
Kramer, Chairperson; and Recommendations - Chris Anderson, Chairperson.

Jinny Castor will give E&V presentations at the National Security
Industries Association (NISA) on 23 May and at the next AdaTEC and
AdaJUG meetings.

Betsy Bailey will be conducting a Human Factors Workshop in May.
It is jointly sponsored by AJPO and STARS. One of the objectives is to
investigate human factors as they apply to the evaluation of current
APSEs. Betsy will present the results of the workshop at the June E&V
meeting.

The RFP for the technical support contractor to the E&V team will
be going to Procurement shortly.

The E&V effort will be developing a terminology list. The
KIT/KITIA terminology list will be used as a basis for the E&V list. 0

The E&V meeting was adjourned for the day.

G-13
-9

"-".' -" . °' i '... " ' - * ° *". / ' - .m°". •" " . " "' "> " " • . • " • " " .-' .".-. .". . .". - _

Minutes
E&V Meeting
7-8 Mar 84

2. Thursday, 8 March 1984

2.1 Announcements/Discussion

Jinny Castor opened the second day of the E&V meeting. A
discussion of several issues was conducted. It was decided to expand

future E&V meetings to two and one-half days. Regarding team net
communication, it was decided that messages should be sent to the
appropriate group with a copy to the team with a very descriptive
title.

2.2 Working Group Status Reports

2.2.1 PUBWG Status Report

The PUBWG Status report was given by Chris Anderson (Chairperson).
No personnel changes occurred in the PUBWG. Draft copies of the Project
Reference List, Public Coordination Strategy document, organizations
list and publications list were distributed to the team for comment.
Projected work for next quarter includes putting the Project Reference
List and PUBWG forms in the EV-Information directory. The minutes and
condensed minutes (E&V Quarterly Report) will be completed. The first
version of the Public Coordination document will be delivered at the
June meeting.

2.2.2 REQWG Status Report

The REQWG Status report was given by Tim Lindquist. New members in
the REQWG include Betsy Bailey, and Ronnie Martin. No deliverables were
due this quarter. REQWG accomplishments include the strawman outline
for the Requirements document. Deliverables for next quarter includes
the first version of the Requirements Document. Betsy Bailey will be
giving a presentation at the June meeting on the Human Factors
Workshop. A revised (as a result of working group meetings) strawman
outline of the Requirements Document was presented. The outline
includes five sections: General Introduction, Approach, Product Quality
Guidance, APSE E&V Requirements, and Summary/Conclusions.

2.2.3 TECWG Status Report

The TECWG Status report was given by Jimmy Williamson
(Chairperson). Personnel additions to the group includes John Taylor,
Mark Mears and Kevin Chadwick. Joe Genlot, the Army representative, was
unable to continue as a Team member. TECWG accomplishments this quarter
include a literature search, and TECWG Coordination Strategy Document
format. Projected work for next quarter includes a follow-up to the E&V
related efforts identified, a draft of the Technical Coordination
Strategy document, and development of a matrix, listing E&V team
members with related E&V activities in which they are engaged. The
objective of the matrix is to identify focal points for coordination of
E&V activities with other related efforts.

C-14 0

S

Minutes
E&V Meeting
7-8 Mar 84

2.2.4 CAISWG Status Report

The CAISWG Status Report was given by Nelson Estes (Chairperson).
Darlene Avery is a new member of the CAISWG. Lori Macky (Bob Harrell's t
replacement) may also join the group. The CAISWG will begin development
of a group of tests for each version of the CAIS as it becomes
available: CAIS 1.1, CAIS as it is reflected by the E&V REQWG,
CAIS-Mil-Std 1.0, and the CAIS as it becomes apparent from the KIT
Implementors Guide. The CAISWG also plans to provide samples of Ada
code that use the CAIS (i.e., CAIS benchmarks). 0

2.2.5 APSENG Status Report

The APSEWG Status report was given by Rick Long (new Chairperson).
Guy Taylor is also a new member. Deliverables due this quarter were the
presentations on the following systems: AIE, ALS, ALS/N, ROLM and
Telesoft. Projected work for next quarter includes a list of tools in
various APSEs. This is an intermediate step in defining basic APSE ;
functions. The APSEWG also plans to maintain a "lessons learned" file
based on the use of various APSEs.

2.3 Open Discussion -

Jinny encouraged working group members to sit in on other working
group sessions when possible. Publication of position papers by team .
members was also encouraged. A document was called to the attention of
the team: "Guideline: A Framework for the Evaluation and Comparison of
Software Development Tools," published by the National Bureau of -

Standards. The REQWG will be sent copies for review.

The E&V meeting was then adjourned.

G-15

[; 12

.G-.1.5

.' ..1

ATTENDANCE LIST
E&V Team Meeting, 7 - 8 Mar 84

LCDR B. Schaar OO-ALC/MMECF (P. Maher)
Ada Joint Program Office Hill AFB, UT
Wash DC

RADC/COES (E. Kean)
AFWAL/AAAF (J. Castor) Griffiss AFB, NYWright-Patterson AFB OH-

SA-ALC/MMEC (H. Dorsett)
0

AFWAL/AAAF (Maj I. Caro) Kelly AFB, TX
Wright-Patterson AFB, OH

SM-ALC/MMEHP (W. Happ)
AFWAL/AAAF-2 (J. Williamson) McClellan AFB, CA
Wright-Patterson AFB, OH

R. Fleming 0

AFWAL/AAAF-2 (Lt R. Wallace) Aerospace Corporation
Wright-Patterson AFB, OH Los Angeles, CA

AFWAL/AAAF-2 (Lt R. Long) NOSC (T. Oberndorf)
Wright-Patterson AFB, OH San Diego, CA

AFWAL/FIGRB (Lt D. Avery) NAC (G. Bettice)
Wright-Patterson AFB, OH Indianapolis, IN

AFWAL/FIGLB (M. M:ears) NAC (L. Lindley)
Wright-Patterson AFB, OH Indianapolis, IN
AFALC/PTEC (G. Burt) FCDSSA (G. Taylor)

Wright-Patterson AFB, OH Virginia Beach, VA

L AFATL/DLMM (C. Anderson) R. Martin
Eglin AFB, FL Georgia Institute of Technology . .

Atlanta, GA
AFCMD/SI (Lt D. Fautheree)
Kirtland AFB, NM Johnson Space Ctr (T. Humphrey)

Houston, TX
AFHRL/IDC (Lt J. Prentice)
Lowry AFB, CO K. Chadwick

National Defence Headquarters
AFLC/MMEC (Capt J. Taylor) Ottawa, Ontario

Wright-Patterson AFB, OH
J. Kramer

ASD/ADOL (G. Chitwood) Institute for Defense Analyses
Wright-Patterson AFB, OH Alexandria, VA

ASD-AFALC/AXTS (N. Estes) Betsy Kruesi Bailey
Wright-Patterson AFB, OH Institu'e for Defense Analyses . -

Alexandria, VA

G-16

-" -' L- .< -. i '-. ,' i -'-. - - -i - ' . -. i-i -.. .. , " i. ' '.,' L -I " i. " . . . -" . ., .. . ". " , ' - .
" "['-:>," T =-' ;,:> " '- ' "- '- "- [> T . ,-- '. ".-" 'L_ .-. . . -. -, -'.C. -c. '. "..' • - -" " " ." " -' -" ._'..' .. .

AFCCPC/SKXX 4R. Harrell T. Lindquist
Tinker AFB, OK Virginia Polytechnic Institute

and State University
ESD/ALL (Mai D. Burton) Blackcsburg, VA
Hanscom AFB, MA

OC-ALC/I4MECE (D. Jennings)
Tinker AFB, OK

G-17

APPENDIX H

MINUTES j
of the

EVALUATION & VALIDATION (E&V) MEETING

i--8 JUNE 1984

Wriaht-Patterson Air Force Base. Ohio

H1

II

.-S

H-il

.-.

"- -'' .,:.' ..' . .. ':. ..""' i ::, . -. ..'. , . .: . '2 - i - " - - - ". - - -- .' , - ' -. - . .'. -i- . "- .- i:. j

Minutes
E&V Meeting
6-8 Jun 84

Table of Contents

1.0 Wednesday, 6 June 1984.....................H-3

1.1 Welcome and General Business..................H-3
12Evaluating AP~SE Usability...................H-3

1.2.1 Evaluation Requirements.....................H-4
1.2.1.1 Objectivity........................H-4
1.2.1.2 Thoroughness..........................H-4
1.2.1.3 Relevance.......................H-5
1.2.1.4 Replicability.....................H-5

I1.2.1.5 Standardization.......................1-5
1.2.2 An Example: A Comparative Evaluation of Text Editors 11-5
1.2.3 Macro-level Issues in Evaluating Usability. H-6
1..2.4 User Characteristics....................H-6
1.2.5 A General Approach to Evaluating Usability. 1-7
1.2.6 Policy Issues.........................H-7
1.3 J,-)hnson Space Center (JSC) APSE Project 11-7
1.4 Integrated Support Software System.............H-8

1.5 Working Group Reports.......................H-10
1.5.1 Requirements Working Group (REQWG)............H-10
1.5.2 Technical Coordination Working Group (TECWG)H-10
1.5.3 APSE Analysts Working Group (APSEWG)...........1-10
1.5.4 CAIS Working Group (CAISW).................1-10
1.5.5 Public Coordination Working Group (PUBWG) H-11

2.0 Friday, 8 June 1984....................- 1

2.1 Working Group Status Reports................H-11
2.1.1 TECWG Status Report.....................H-11
2.1.2 PUBWG Status Report......................H-11
2.1.3 APSEWG Status Report...................H-12
2.1.4 CAISWG Status Report.......................H-12
2.1.5 REQWG Status Report.......................H-12
2.2 General Discussion.........................H-13
2.2.1 Action Items...........................H-13

2.2.2 Agenda for September E&V Team Meeting..........H-13
2.2.3 E&V Briefings..........................H-13
2.2.4 Team Net Communication....................H-14

11-2

Minutes
E&V Meetina
6-8 Jun 84

1.0 Wednesday, 6 March 1984

1.1 Welcome and General Business

The E&V meeting began with a welcome by the Chairperson,
Jinnv Castor, followed by the distribution of the official set of
E&V viewqraphs. Team members were encouraged to brief their home
organizations, so that they can better understand the E&V Task. A
list of files on the (EV-INFORMATION> directory at USC-ECLP was
also distributed.

Tom Griffin. the new E&V Support Administrator, was
introduced. folloved by self-introductions of all E&V Tea--
Members.

Hiqhliahts of the E&V Workshop held in Arlie, Virginia from
2-6 April, 1984 were presented by Jinny Castor. Draft E&V Worksh.p S
documents were distributed to Team members for review. The aoals
of the Workshop were to develop draft documents concernini t-,e
Requirements, the Reference Manual and Recommendations. The final
Workshop Report will be published and available to the public by
September 1984. Industry Workshop participants will be invited to
the September E&V meeting. 0

E&V presentations will be given at the next AdaJUG l6-18
July) and AdaTEC (30 July - 1 August) meetings. There will alsD be
an E&V Birds-of-a-Feather (BOF) session at the next AdaTEC
meetina.

1.2 EvaluatinT APSE Usability

Dr. Elizabeth Kruesi Bailey from the Institute for Defense
Analyses gave a presentation concerning evaluation of Ada - -
Programming Support Environment (APSE) usability. She emphasized
the fact that APSEs are intended to support the software e
activities of people.

Dr. Bailey began by discussing three major points. (1) APSE
Usability has a number of individual components that can be
evaluated quantitatively, objectively and vigorously. (2) Precise
definitions of usability is essential to the evaluation process.
(3) Usability can be measured as quantitatively as any other
system characteristic provided the focus is on the user's
performance and subjective reactions and not on APSE features.

H-3

........... , . ,. ,....

Minutes
E&V Meet ina
6-8 Jun 84

Dr. Bailey then outlined the followin' items to be discussed
durina the remainder of her presentation: the requirements tor the
evaluation of a system; an example of an evaluation of text
editors: macro-level issues (i.e., at what level of the user's
activities should the evaluation focus be placed); user
characteristics; and finally comtining all these factors together B
to define a general approach to evaluating the usability of APSEs.

1.2.1 Evaluation Requirements

The first requirement for the evaluation of an APSE is
.bclectivity. Objectivity implies that the evaluation should be B
impartial (i.e., not biased toward any particular 5et of desiml,
constructs or desian features).

The next requirement is thorouahness which implies the
consideration of multiple aspects of the system being evaluated.

Other requirements are that characteristics evaluated must be
relevant, and that the evaluation results must be replicable.

Finally, the evaluation process must be standardized so that
results from independent evaluations can be compared.

1.2.1.1 Objectivity

Dr. Bailey discussed two approaches to achieving objectivity
in the evaluation of APSEs. The first approach is to analyze the
individual APSE features. However, given the current status of
knowledge concerning APSE features, this approach would be highly
subjective. Additionally, an evaluation of individual APSE
features would not allow for the synergistic advantages that may
be aained by combining certain APSE features.

A second approach is to focus the evaluation on user
activities that APSEs are designed to support.

1.2.1.2 Thoroughness

Thoroughness of an APSE evaluation implies the consideration
of multiple aspects of the system. These aspects include: ease of
learning, retention and use for the beginning or intermittent
user; efficiency and power as seen by the expert user; and user
satisfaction for the discretionary user.

H -
H- 4. .- ,

.* ..-. * . .-.. . . . - " ,, ', ., . . . - ..*.- - :... - - .-.- . .--" .- -. . -.- .-. . .. _

Minutes
E&V Meeting
6-8 Jun 84

1.2.1.3 Relevance

Relevance of an evaluation implies that important APSE
characteristics are beina evaluated. Determining relevance
requires competency in human performance measurement (i.e.,
experimental psychologist), attitude assessment (i.e., clinical
psychologist) and the software development process (i.e., computer
scientist).

1.2.1.4 Replicability

Replicability of an APSE evaluation implies that the same
pattern of results can be obtained by independent evaluations. In
order to achieve replicability the evaluation process must be
precisely described in such a way that it is repeatable. This car;
best be accomplished via operational definitions where tho
characteristic being evaluatea is defined by the operations that
are used to conduct the evaluation. "

1.2.1.5 Standardization

The fifth and final requirement is that the evaluation be
standardized. This represents a more stringent form of the - .
requirement for replicability by ensuring that independent
evaluation results for different tools can be directly compared
reiardless of time elapsed between evaluations or evaluator. The
requirement that an evaluation be standardized has a critically
important side effect: it allows for the accumulation of
evaluative information in the form of a central database.

1.2.2 An Example: A Comparative Evaluation of Text Editors

Dr. Bailey discussed an evaluation of text editors carried
out by Roberts and Moran which meets the requirements previously
discribed. The Roberts and Moran study involved a comparison ot
nine text editors. A set of fifty three benchmark editing tasks
were defined in order to provide the common ground for comparison
across editors. The evaluation encompassed the following three
aspects of usability: ease of learning (time to complete tasks by
novice users); efficiency (time to complete all tasks by expertsi;
and errors (error correction time divided by error-free time by
experts).

H-5

2.1.:--...........

Minutes
E&V Meetina
6-8 Jun 84

This study is of interest because it conforms to the
requirements listed for an evaluation methodology. It is objecti,e
in that it focuses not on particular design features of editors
but on the performance of the user in carrying out typical editing
tasks. It is thorough in that multiple aspects of usability were
examined. It is relevant in that the measure used conforms to
general intuition about the characteristics that contribute to
usability. It is replicable in that the procedures for conducting
the evaluation are laid out in sufficient detail to enable ar.
independent evaluation. Finally, it provides the basis for j
standardized evaluation since all of the benchmark tasks are
described in detail.

Dr. Bailey pointed out that only the most important results
reported by Roberts and Moran was that the entire effort waS
doable and yielded meaningful results that are of interest to
potential users of these editors.

1.2.3 Macro-level Issues in Evaluating Usability

Dr. Bailey next discussed the issue of definina the -
"

appropriate level at which APSE support for user activities should
be evaluated. In examining different types of APSEs, there are -

changes in the integration of APSE functions, specific tools and
lower-level user activities (e.g., compiling as a separable user
activity disappears). What remains constant is the hiah-level
activity (e.g., coding). Thus, this appears to be the proper level
to focus the evaluation in order to achieve independence from APSE -
design constructs. The set of functions within an APSE are likely
to change as more and more of the life-cycle becomes automated.
Although more user functions will be supported, the user functions -.

themselves, will not change.

1.2.4 User Characteristics

Next, Dr. Bailey discussed the need to characterize the APSE -
users. This is important because user characteristics can have
major consequences for the components of usability. For example,
ease of learning may be critically important to the first time
user. Suggested dimensions of user characteristics include: iob
type, degree of discretion, frequency of use, expertise in system
usage, expertise in job and team relationship.

H-6

Minutes
E&V Meetina
6-8 Jun 84

1.2.5 A General Approach to Evaluating Usability

Dr. Bailey outlined the following steps in evaluatin APSE.
usability. (1) Identify high-level user activities which will
provide a common ground for evaluation. (2) Characterize the
users. (3) Construct a matrix showing activities and users in 0
order to point to components which should be emphasized. (4)
Develop operational definitions for various components of
usability within the context of each activity.

1.2.6 Policy Issues

Dr. Bailey pointed out the importance of publishing the
evaluation procedures and results. Publication of the proceduies
will encourage APSE builders to use these tests during the desian
process. Publication of the results will eliminate repetitious
evaluations on the same tools.

1.3 Johnson Space Center (JSC) APSE Project

Dr. Charles McKay from the University of Houston - Clear Lake
(UH-CL) discussed the Johnson Space Center's effort to create a
distributed network testbed so that empirical research related to
space stations can be conducted. Dr. McKay said that using Ada as 0
the programming design language would guarantee a highet
probability of success due to Ada's capability to support
parallelism, concurrency and fault tolerance.

As part of the education process to begin work on the
testbed, a joint NASA/JSC UH-CL Steering Committee on software
engineering with Ada, was formed. Membership includes personnel
from JSC, UH-CL, and JSC contractors. The group meets regularly to
discuss the work going on with respect to the following issues:
models - distributed network, open systems interconnection,
distributed relational database; methodologies - object oriented
design, layered design; and tools - MAPSEs and beyond. 6

In developing the joint NASA/JSC UH-CL testbed, many factors
must be considered: the workbench, the work - verification
(KIT/KITIA related work), validation (develop a Network Operatin,
System in order to demonstrate Ada's capabilities), and NASA Ada
transition planning; and the Schedule - a 17 year log book.

H-.7

p.-.. -

. ._,.* .. , * 4 *.- . .. **". .' ****: * ...-.. _.

L

Minutes
E&V Meeting
6-8 Jun 84

Furthermore, the requirements for the Space Station Systems
include 12 types of local area networks with many variations of
each type. In this context, the requirements for Space Station-
Systems state that an integrated approach is necessary in
providing an end-to-end information system. More simply, the
Station's information system must permit any user located at any
local area network at any cluster to obtain information regardless
of where it is stored. Thus a list of interface levels for users
of the system must be defined. At the simplest level, there must
be four transparencies to the user: it should be transparent to
the user where the information he desires is located: it should be
transparent to the user what kind of information replication is 0
required; it should be transparent to the user how many processes
are working on his behalf; and the fault tolerance aspectb -)f the
system should be transparent to the user.

Dr. McKay stated that the APSE has a tremendous pr- ential f- - .
integrating various network models in order to meet Space Station S
System requirements. NASA/JSC is planning to develop the runtie-
support environments, the network operating system, the network
configuration management, information management and communication
management using Ada with a minimal amount of assembly code.

1.4 Integrated Support Software System

Mr. Raymond Szymanski from the Air Force Avionics Laboratory .
gave a presentation on the Integrated Support Software SysteT"
(ISSS). The initial objective of ISSS was to provide the Avicnic"
Simulation and Integration Laboratory (AVSAIL) and PAVE PILLAR a -

support software environment for JOVIAL and MIL-STD 1750A. The
basic approach was to integrate Air Force owned tools wiLrn
commercially available tools and tools developed in-house.

H-8

:L ,I .- - -L ...[.. q .? i? . .-.-[:•..,.[.. •... .-k .. . l. _ , -• - • , - ,- .- ,' .- . - •, •. . -. .. .,.,'.. _._ , '_,:. ,. .

Minute s
E&V Meet ina
6-8 Jun 84 . .

ISSS was developed to address the complete software life
cycle. It was originally intended to be a laboratory environment
only. Many off the shelf tools were incorporated within ISSS. ISSS
is hosted on the VAX 11/780 and utilizes all the DEC provided
utilities. To complement that, the IS/l Workbench was also 0
utilized. IS/I Workbench has the same file system as the VAX. it
has a word processing system, a screen oriented editor, a function
key oriented terminal, and a number of other programming tools.
One such tool is a configuration management tool called "MAKE".
Once a makefile has been correctly defined, the user can reui'd
his product by merely executing the makefile. Another tool, Soulct •
Code Control System (SCCS), allows the user to rebuild any product
as it existed during any state of development.

Other tools beino considered for future incorporatiri intc
ISSS include "USE.IT". Basically, it's a graphics building block
approach to generating lines of high-order language cole. 0
Currently, USE.IT has proven to be an excellent tool for definira
requirements and expections are high that once an avionics library
is built, USE.IT may be able to generate high-order language code
efficient enough for avionics applications.

Another program being examined is Software Design and .

Documentation Language (SDDL). SDDL permits a user to describe
system requirements in an English-like format and the SDDL
processes generate pseudo code. Thus far, this tool has
successfully been used to "reverse engineer" software (i.e.,
provide documentation in the form of interface definitions, and
flow diagrams for source code). .

Current work on ISSS is focused on supporting the
JOVIAL/1750A environment. Another tool, LODAYK has been developed
to download VAX generated 1750A code to a 1750A processor.

Additionally, work is progressing on an effort to network a
VAX 11/780 to a HARRIS 800 to provide simulation capabilities at
the Laboratory. Current capabilities include virtual terminal from
VAX to Harris and Vice versa.

Even though ISSS was developed as a Laboratory tool, it has
been installed at two Air Logistics Centers at their request for S
the purpose of evaluating the environment for future ALC use. To
date, the reaction to ISSS from the ALCs has been very positive
with much interest being shown in the area of VAX/Harris
networking.

H-9-

H-_9

I,' _< i:: ? : ' -""- .L<-' ?" '? :": ? 'L-.''?, : .. , "-' . ' . . "-. - _ -.- _ .. ,_ - ._ _,. 0 .

Minutes
E&V Meeting
6-8 Jun 84

1.5 Working Group Reports

Each E&V Team Working Group Chairperson presented a brief
report concerning the activities scheduled during the individual
Working Group sessions.

1.5.1 Requirements Working Group (REQWG)

The RECWG Chairperson, Major Dan Burton and Team member Lt
John Prentice, can no longer participate with the E&V effort. Dr.
Betsy Bailey and Dr. Tim Lindquist have been named Co-Chaikperzons
for this working group. The RECWG was to have delivered a dr&ft
Requirements Document this quarter, but because of the personnel
turnover the draft document delivery will be a few weeks late

1.5.2 Technical. Coordination Working Group (TECWG)

The TECWG Chairperson, Jimmy Williamson, distribu-. d th0 5
draft Technical Coordination Strategy document to the Team fir
review and comment by 22 June. The final version is scheduleu to
be available to the public on 6 July. The objective of thi:-
document is to present the strategy for identifying other E&V.
related efforts...

1.5.3 APSE Analysts Working Group (APSE.G)

The APSEWG Chairperson, Liz Kean, discussed the Group's
accomplishments. Thus far, the APSEG has identified five APSEs:
the Ada Language System (ALS), the ALS/NAVY (ALS/N), the Ada
Integrated Environment (AIE), Telesoft, and ROLM. A taxonomy for "
each of these environments has been developed. Future work
includes a detailed comparison of these environments and
publication of the results in an APSE Analysts Document.

1.5.4 CAIS Working Group (CAISWG)

The CAISWG Chairperson, Nelson Estes, discussed the Group's
approach to developing the Validation Procedures Document. The
draft document will reflect general validation procedures common
to existing validation organizations. Later versions of this
document will include CAIS specific validation procedures.

H- 10

S:::: ::

M- nut : s
E&V Meet1 -ic
6-8 Jun 84

1.5.5 Public Coordination Working Group (PUBWG)

The PUBWG Chairperson Chris Anderson, distributed the minutes
from the last E&V meeting and the Public Coordination straLe'..y
Document. Both documents are available to the public on the
(EV-INFORMATION) directory, password "EV".

The PUBWG's plans for the working sessions during this
meeting were presented and include: developing an E&V Status
Report to be distributed at upcoming major conferences; a-,rI
developing a Recommendations Questionaire basea on thb F&Y
Workshop Recommendations for distribution at the L&%V
Birds-of-a-Feather (BOF) Session at the AdaTEC meeting in Jul,.

The general session of the E&V meeting was adjturned s- that
workina groups could meet separately. Wrk;ng groui; met.
separately through Thursday.

2.0 Friday, 8 June, 1984

2.1 Working Group Status Reports

2.1.1 TECWG Status Report

The TECWO Status Report was given by Jimmy Williamson the
Chairperson. No personnel changes were noted. The draft Technical
Coordination Strategy Document was delivered this quarter ec-
review by the Team. Also, the TECWG distributed a matrix listing
E&V Team members who are also active in other potentially related
E&V efforts. The only deliverable for next quarter is th . final 0
Technical Coordination Strategy Document.

2.1.2 PUBWG Status Report

The PUBWG Status Report was given by Chris Anderson, the
Chairperson. No personnel changes were noted. Deliverables this
quarter include the Public Coordination Strategy Document, the
minutes from the last E&V meeting, the condensed version of the
minutes for executive review, and the Project Reference List.

The PUBWG has requested the "Ada Fair" and "World of Ada"
organizations to send the benchmarks to the E&V Chairperson.
Current work includes the E&V Status Report to be distributed at
upcoming conferences, the minutes of the E&V meeting, and the
Recommendations Questionaire and accompanying viewgraphs for the
AdaTEC BOF session in July.

H--11 Si!i!!!i

...

Minutes
E&V Met inc,

6-8 Jun 84

2.1.3 APSEWG Status Report

The APSEWG Status Report was given by Liz Kean, the
Chairperson. Personnel changes included Lt Rick Lonq's departure
and the addition of Mars Gralia. Liz Kean is assuming the role of
Chairperson in place of Rick Long. No deliverables were due this
quarter. Accomplishments include the initial taionomies o' the
AIE, ALS, ALS/N and Telesoft environments. The initial version of
the APSE Analyst Report will be delivered at the September meet ing
for review and comments, with the final version delivered 28
September. An accompanying presentation will also be giver.. A S
strawman outline of the APSE Analyst RepoLt format was presented.
The outline includes five sections: Introduction, Scc!c,
Identification of APSEs, Analyzed and Rationale, Descrr tion ofi
Each APSE. and Comparison of APSEs. It was suggested and ag~ee
upon to include an Executive Summary at the beginning of the , ..
Report.

2.1.4 CAISWG Status Report

The CAISWG Status Report wac given by Nelson Estes, the
Chairperson. No personnel changes were noted. No deliverables were

due this quarter. The draft version of the Validation Policles and
Procedures Document will be distributed to the Team for review if.
August. Work was initiated on the Test Requirements Document. Thi
document consists of guidelines that a contractor will use to
develop the CAIS validation tests. Presentations planned f-r the-
next meeting include a briefing ccncerning the draft Policies and
Procedures Document.

2.1.5 REQWG Status Report

The REQWG Status Report was given by Dr. Betsy Bailey, the
Co-Chairperson. Personnel losses include Dan Burton and John
Prentice. New Members include Mike Burlakoff and Marlene Hazle. 0
Dr. Betsy Bailey and Dr. Tim Lindquist will act as Co-Chairs for
the group. Deliverables this quarter included the RequirementL
Document. Due to the personnel turnover, only a preliminary draft
of this Document has beer, completed. An initial version of the
Requirements Document will be sent to the Team for review in
mid-August. The major sections of the Requirements Document will
include: Introduction, Approach, APSE, E&V Requirements (based on
components and attributes matrix) and Product Quality Guidance.

H--12

9.

.° .-.

..

Minutes
E&V Meet incr
6-8 Jun 84

2.2 General Discussion

2.2.1 Active Items

Jinny Castor listed some administrative action items that she
will handle. Tear, action items based on the Group Status Reports
were also noted.

2.2.2 Agenda For September E&V Team Meeting

The distinguished reviewers (i.e., the E&V Worki-hop

participants) will be invited to attend the first day of the Te&tr
meeting in September. It was decided to have a i-oin,
(distinguished reviewers/E&V Teaio) session for the first -ay of
the meeting consisting of two panel sessions moderated by th."
CNISWG and REQWG. The CAISWG will present the CAIS Va1idatr -
Policie. and Procedures DocumEnt followed by an open f]or S
discussion so that the distinguished reviewers can comment.

The CAISWG will also solicit input from the distinguished
reviewers regarding the Test Requirements Document.

Similarly, the REQWG will present the Requirements Doc;-mient
tollowed by comments and discussion from the audience.

The second day of the meeting will feature presentat4oni ftr._"ii.
the APSENG, and Capt Rick Contreras, Hq AFOTEC, foilowed by
separate working group meetings.

2.2.3 E&V Briefings

Jinny Castor encouraged the Team to present E&V briefings at
conferences, Government meetings and at their home organizations.
An action item was also given to the PUBWG to send the E&V Status
Report to the publications identified in the Public Coordinaticn
Document as well as others such as the Intellimac and Sperry
newsletters. An accompanying letter must also be drafted by the
PUBWG for Jinny's signature.

H-.13

-S

• -- •". • " - '- - -- • --. .-.-.-..-.... .-. ,.. . .-.. .-.-.-.. . .-. ,-..-. .-.-. ,..-.? ' :, .--,, . "

Minutes
E&V Meetinq
6-8 Jun 84

2.2.4 Team Net Communication

In order to tag messages for comment by the Team or by
particular working groups, various prefixes to message subjects -'

were recommended. These prefixes include: TEAM/PC: (message for S
Team. Provide Comments); and Individual Working Group Name/PC
(specific Working Group, provide Comments, example APSEWG/PC:
subject); Other prefixes for informational messages only include:
TEAM:sublect (informational message for Team); and Individual
Working Group Name (informational messaqe for specific WocJc.-n
Group). S

All messages should be copied to the entire Tea-a.

The E&V meeting was then adjourned.

H- 14

S

Minutes
E&V Meetina
6-8 Jun 84

ATTENDANCE LIST U
E&V Team Meeting, 6-8 June 1984

Virginia Castor Chris Anderson
AFWAL/AAAF AFATL/DLMM
Wright-Patterson AFB, OH Eglin AFB, FL

Patrick Maher Mars Gralia
MMECF Johns Hopkins University
Hill AFB, UT Applied Physics Laboratory

Laurel, MD

Don Jennings Jimmy Williamson U
OC-ALC/MMECE AFWAL/APAF-2
Tinker AFB, OK Wright-Patterson AFB, OH

Marlene Hazle Lt Lori Mackey
MITRE Corporation CCSO/SKXX
Bedford, MA Tinker AFB, OK U

Lt Col Dick Cline Capt Rick Contreras
HQ AFOTEC/LG5 HQ AFOTEC/LG55
Kirtland AFB, NM Kirtland AFB, NM

Maior James R. Johnson Elizabeth Kean 0
AFWAL/AAAF-2 RADC/COES
Wricht-Patterson AFB, OH Griffiss AFB, NY

Lt Darleen Sobota Capt John Taylor
AFWAL/FIGR HQ AFLC/MMEC
Wright-Patterson AFB, OH Wright-Patterson AFB, OH

Guy Taylor Mike Burlakoff
FCDSSA Southwest Missouri State Univ
Virainia Beach, VA Springfield, MO

Richard Fleming Charles McKay 0
Aerospace Corporation University of Houston
Los Angeles, CA Houston, TX

Mark Mears Nelson Estes
AFWAL/FIGL ASD/AXTS
Wright-Patterson AFB, OH Wright-Patterson AFB, OH

Greq Bettice R. J. Martin
Naval Avionics Center Georgia Institute of Technology
Indianapolis, IN Atlanta, GA

H- 15

." .-0

Minutes
E&V Meetinq
6-8 Jun 84 -

Elizabeth Bailey Jack Kramer
Institute for Defense Analyses Institute for Defense Analyses
Alexandria, VA Alexandria, VA

Trim Lindquist Gina Burt
'Jirq inia Polytechnic Institute AFALC/PTEC
Blacksbura, VA Wright-Patterson AFB, OH

Raymond Szymanski
AFWAL /AAAF- 2S
Wriciht-Patterson AFB, OH

H- 11

APPENDIX I

MINUTES-

of the S

EVALUATION & VALIDATION (E&V) MEETING .

5-7 September 1984 >

Wright-Patterson Air Force Base, Ohio

Minutes
E&V Meeting4

5-7 Sep 84

riTable of Contents 0

1.0 Wednesday, 5 September 1984..................1-3

1.1 Welcome and General Business.................1-3
1.2 APSE Validation Procedures Document Review 1-4
1.3 E&V Requirements Document Review...............1-4
1.3.1 Introduction Section.......................1-4
1.3.2 General Requirements and Criteria for the E&V Methodology 1-5
1.3.3 Approach............................1-5
1.3.4 Required APSE Evaluations and Validations.- 5
1.3.4.1 Attribute Definitions...................1-5
1.3.4.2 Required Component Evaluations..............1-5
1.3.4.3 Required Macroscopic Evaluations.............1-6

2.0 Thursday, 6 September 1984..................1-6

2.1 AF Operational Test & Evaluation Center (AFOTEC) Activities 1-6
2.2 Independent Testing of an Ada Compiler............1-7
2.3 Working Group Meetings....................1-8

3.0 Friday, 7 September 1984.....................1-8

3.1 Working Group Status Reports.................1-8
3.1.1 TECWG Status Report.....................1-8.
3.1.2 PUBWC Status Report.....................1-8
3.1.3 APSEWG Status Report....................1-9
3.1.4 CAISWG Status Report....................1-9
3.1.5 REQWG Status Report.....................1-9
3.2 General Discussion......................1-10 --

1-2

Minutes 0
E&V Meeting
5-7 Sep 84

1.0 Wednesday, 5 September 1984 .

1.1 Welcome and General Business

The E&V meeting began with a welcome by the Chairperson, Jinny
Castor, followed by self-introductions of Team members and
Distinguished Reviewers (i.e., the E&V Workshop participants.) 0

Inputs were solicited regarding updating the E&V Plan,
publication of the E&V Public Report, modification of Working Group
responsibilities and Distinguished Reviewer participation in future
E&V activities. Team members were also reminded to provide the .
necessary information to the PUBWG regarding reference material so 0
that the Project Reference List can be updated.

The sources sought synopsis for the CAIS Validation Capability
appeared in the Commerce Business Daily on 23 August. Unfortunately,
the published synopsis did not appear as written. Consequently, a
corrected publication will occur shortly.

The RFP for the E&V Technical Support effort will be issued by
mid-September.

The Technical Coordination Strategy Document will be sent to
program managers listed in the document for review (e.g., the JSSEE, 0
WIS and STARS program managers.)

No further mass reproduction and mailing of documents will be
performed for the E&V Team. Documents will be sent to interested
individuals for review or will be available on the MILNET.

S

MILNET communication by Team members was encouraged.

The Deliverables Schedule was reviewed. To date, the following
items have been delivered: The E&V Plan, the initiation of the
Project Reference List, the Public Coordination Strategy Document,
and Technical Coordination Strategy Document. Completion of the 0
Requirements Document has slipped but should be completed by the end
of September.

On August 1, 1984 Jinny Castor provided an E&V presentation at
the SIGAda meeting in Hyannis, Ma. Over 200 copies of the E&V
Recommendations Questionnaire and the Compiler Questionnaire were
distributed at that meeting. An extremely low number have been
completed and returned. Thus, it would appear that an alternate
means for soliciting coordination must be found.

1-3

"-* ~'~.*- * . * . -- . -- Z l t ~ '. * .a . . .

Minutes 0

E&V Meeting
5-7 Sep 84

1.2 APSE Validation Procedures Document Review

Nelson Estes, the CAISWG Chairperson, presented an overview of
the draft APSE Validation Procedures Document and solicited comments .
from the audience. A list of assumptions made by the CAISWG in
developing the document was distributed to the team and discussed.
one of the primary assumptions is that the CAIS 1.3 will not apply
to embedded systems.

The draft document also implied that all APSE standards will
be included in the CAIS. It was pointed out that this may be
confusing since these other standards have not yet been developed.
Eventually this document will address validation of all APSE -

components which have an associated military standard. Thus far,
only the CAIS and the compiler fall into this category.

It was recommended that the proposed APSE Validation
Organization be abbreviated as APSEVO to distinguish it from the
Ada Validation Organization (AVO). Also it was recommended that the
E&V standard definitions of terms be used.

It was pointed out that this document will address validation
of the implementation of the CAIS itself, not validation of tool
interfaces to the CAIS. Whether or not a tool properly interfaces to
the CAIS is strictly an evaluation issue unless the tool is
addressed in a mandatory standard. In the latter case, the tool's 0
interface may be subject to validation procedures. Written comments
were collected by Nelson to be incorporated in the next version of-
the draft document.

1.3 E&V Requirements Document Review --

Dr Tim Lindquist introduced members of the RECWG who then
proceeded to discuss various portions of the Requirements Document.
Tim pointed out that the document is still in draft form. He
solicited critical review of those requirements already presented in
the document as well as suggestions for additional requirements.

1.3.1 Introduction Section

Rich Fleming presented an overview of the Introduction Section
of the document. He stated that the purpose of the document is to
set forth requirements pertinent to the E&V effort. There are two
primary types of requirements: those related to the E&V products for
tools, methodologies, database, documentation, and E&V techniques; .
and those for the evaluation/validations for APSE components. .

Several review comments were offered.

It was pointed out that the scope of the E&V Task is to define
the functionality of individual APSE components, not to define what
constitutes an APSE.

1-4

• • :)S

-'-i'i--i .-'i-.':..'?'. - '.',:-. ,:..... '.? :,r: '---- .. " '-"." ". ' " " " i . c -. . .,' "

Minutes S
E&V Meeting
5-7 Sep 84

It was recommended that the underlying assumptions be
presented in the Introduction so that readers will be well informed
as to the intent of the document.

1.3.2 General Requirements and Criteria for the E&V Methodology

Dr Elizabeth (Betsy) Kruesi Bailey presented an overview of
Section 2 of the Requirements Document. Section 2 addresses the
requirements on the E&V Team and on the E&V methodology. The -
document does not address requirements on the application of E&V
technology.

1.3.3 Approach

Next, Betsy presented an overview of Section 3 of the 0
Requirements Document which focuses on the approach of addressing
the requirements listed in the document. The E&V Team Working Groups
are the primary means of addressing the requirements on the E&V
Team. The primary means of addressing requirements on technology
development will focus on providing useful and usable information on
APSE tools. This will be accomplished by developing the 0
classification scheme (i.e., component/attribute matrix) for each
tool to be evaluated and filling in the cells of the matrix with
appropriate questions to be answered by E&V.

1.3.4 Required APSE Evaluation and Validations

Dr Tim Lindquist presented the introduction of Section 4,
Required APSE Evaluations and Validations. He also outlined the
contents of Section 4: attribute definitions, required component
evaluations, and required macroscopic evaluations.

1.3.4.1 Attribute Definitions 0

Tim discussed the attributes that the APSE components are to
possess. A lengthy discussion followed concerning various
definitions.

1.3.4.2 Required Component Evaluations 0

This section is broken down into subsections, each addressing
a different APSE component. The subsection first consists of the
following items: a hierarchical breakdown of the component and
accompanying definitions; component's hierarchical element followed
by an attribute and one or more questions addressing the component's
hierarchical element/attribute pair.

The components discussed thus far in the draft document
include the Configuration Manager, Command Language Interpreter, and
Compiler. Marlene Hazle discussed the Configuration Manager. It was
also suggested that the interfaces of the various tools as they
relate to each other (e.g., compiler, linker, run time system, etc.)
are macroscopic issues that must also be addressed in the
Requirements Document.

1-5 ""

Minutes 0
E&V Meeting
5-7 Sep 84

1.3.4.3 Required Macroscopic Evaluations

Tim Lindquist presented an overview of Section 4.4 of the 6
Requirements Document dealing with macroscopic issues. These issues
focus on the degree to which an APSE supports a particular software
development methodology; tool support of life cycle phases; tool
support of classes of mission-critical applications; and inter-tool
interfaces.

The E&V meeting was adjourned for the day.

2.0 Thursday, 6 September 1984

The E&V meeting was opened by Jinny Castor. She outlined the
agenda for the day and introduced the first speaker. S

2.1 Air Force Operational Test and Evaluation Center (AFOTEC)
Activities

Captain Rick Contreras from AFOTEC gave a presentation on -

AFOTEC's activities. AFOTEC is charged with evaluating embedded O
computer system software during the operational phase of the
software life cycle. DoD Directive 5000.3 (26 Dec 76) provides the
direction for AFOTEC activities. AFR 80-14 (12 Sep 80) further
clarifies the methodology and AFOTEC's existence.

Software evaluation can be divided into two main areas:

operational effectiveness and operational suitability. Automated
support for evaluating operational effectiveness is nonexistent.
Instead, close work with operating and developing agencies during
the various life cycle phases of the software provides the necessary
information for an evaluation of operational effectiveness.
Automated support and methodologies are available for evaluation of
operational suitability. The remainder of Rick's discussion was
devoted to these support tools and methodologies.

Software supportability can be divided into two main areas:
maintainability design considerations and software support
resources. Rick defined software maintainability as the ability to
provide a timely response to operational requirements. Several
characteristics of software are examined: modularity,
descriptiveness, consistency, simplicity, expandability, and
instrumentation. At least ten aspects of each characteristic are
examined via questions during an evaluation.

The software maintainability evaluation approach consists of
documentation and source code listings examination followed by
standard questionnaire completion. Evaluators (software experts)
come from AFOTEC, the eventual support agency, and/or the using
Command. The questionnaires feature a grading system for software
characteristics. A numerical score is given. All questionnaires are
publicly available through NTIS.

1-6

• . .. ,. . . -" . -. . . '... , . .'-i '. ., . .. -,', : ,': :' . : *,, " " ", , "

Minutes 0
E&V Meeting
5-7 Sep 84

2.2 Independent Testing of an Ada Compiler

Dick Drake from IBM Federal Systems Division presented an 0
overview of a project focused on independent testing of an Ada
compiler in support of the Submarine Advanced Combat System (SUBACS)
Program. The SUBACS Ada compiler was to be hosted on an IBM 370 and
targeted to an M68000 and AN/UYK-44. In August 1983, IBM contracted
Telesoft to produce the Ada compiler. The goal was to be able to use
some amount of Ada in SUBACS (the remainder being CMS-2, Pascal and •
assembly language). The outcome is still uncertain at this point,
with Ada compiler testing still continuing.

IBM's testing strategy for the Telesoft compiler concentrates
on the functionality to be used on SUBACS. The compiler is a subset
of Ada (i.e., no tasking, exceptions, or representation 0
specifications). The SUBACS Program Design Language (PDL) is based
on Ada.

There are several types of tests which IBM developed for the
compiler: functionality tests and performance tests. Functionality
tests include those developed by IBM; those developed by BITE, Inc; S
and those developed for Telesoft by Tachyon.

The performance tests were developed by OC Systems, Computer
Science Corporation (CSC), and BITE, Inc. Some tests developed by OC
Systems are based on the Ada Europe compiler selection guidelines.
The code is not executed but manually inspected. Other performance
tests developed by OC Systems consist of benchmark tests comparing
Ada, Pascal, CMS-2, and Assembly Language. The benckmarks include a
heapsort, bubble sort, and fixed-point tests. BITE, Inc. is
currently developing capacity tests. Details of these tests are not
yet available. CSC developed three types of benchmark tests:
application, optimization detection, and language features. All S
tests are well documented.

IBMs heartiest emphasis has been placed on application
specific testing. The primary approach is to develop prototype
SUBACS applications concentrating on interfaces (i.e., language,
tool, and run-time) and language features (i.e., sufficient subset).

Compiler ability will then be tested but these tests have not
yet been developed.

Another interesting approach to testing that is being pursued

is random test generation. The random generator works from templates - S
of Ada and Pascal code. Two programs will be generated in Ada and
Pascal so that a comparison can be made.

1-7

Minutes 0

E&V Meeting
5-7 Sep 84

2.3 Working Group Meetings

The general session of the E&V meeting was recessed for a few 0
hours so that the Working Groups could meet separately. The
Distinguished Reviewers also met separately with Jinny Castor and
LCDR Brian Schaar.

The general session reconvened.

The Distinguished Reviewers' meeting resulted in the following
guidelines for future participation. The Distinguished Reviewers (or
alternate) who attended this meeting (15 out of the original 21) are
now permanent Distinguished Reviewers. The remaining six will no
longer be considered Distinguished Reviewers. As long as the
Reviewers participate, they will continue to be members. Each year 0
new members may be added through participation in the annual E&V
Workshop. The Distinguished Reviewers were distributed among the E&V
Working Groups and are now members of those groups. Distinguished
Reviewers are not eligible to be a working group chair.

3.0 Friday, 7 September 1984

3.1 Working Group Status Reports

3.1.1 TECWG Status Report

The TECWG Status Report was given by Jimmy Williamson, the
Chairperson. Several personnel changes were noted: E&V membership -
Randal Leavitt, replacing Kevin Chadwick; Distinguished Reviewers -
Paul Dobbs and James Parlier, General Dynamics. Version 1.0 of the
Technical Coordination Strategy Document has been finalized. No
unresolved problems were reported. No deliverables are due next
quarter. S

3.1.2 PUBWG Status Report

The PUBWG Status Report was given by Chris Anderson, the
Chairperson. One new member of the group was reported, Betty Wills.
The minutes from the last meeting were distributed. The Quarterly 0
Status Report was distributed at the SIGAda and AdaJUG meetings.
Inputs to the Project Reference List were solicited from the E&V
Team in order to maintain a current listing of our documents. The
E&V Questionnaire based on the workshop recommendations was also
distributed at the SIGAda meeting. Thus far, few responses have been
received. Current work includes the E&V Status Report, the Minutes 0
of the E&V meeting, Project Reference List updating, assistance in
the publication of the Annual E&V Report, and the report from the
Recommendations Questionaire.

.1-8..

Minutes
E&V Meeting
5-7 Sep 84

3.1.3 APSEWG Status Report

The APSEWG Status Report was given by Liz Kean, the
Chairperson. The working group name was changed from APSE Analysts
to APSE Working Group. Six new members were noted: E&V members -

Captain Albert Deese, Alternate; Doug Yarborough, GTE Government
Systems; William Grabowski, GTE; Distinguished Reviewers - Paul
Reilly, Data General Corp; Bard Crawford, TASC; and Marlow Henne,
Harris Corp.

Commercial APSEs will not be described in the APSE Analyst
Report due to potential legal problems. Thus, only DoD-developed
APSEs will be described: the AIE, ALS, and ALS/N. Commercial APSEs
will be examined for functionality input only. Version 1.0 of the
APSE Analyst Report will be delivered by 30 September. No •

deliverables are due next quarter.

3.1.4 CAISWG Status Report

The CAISWG Status Report was given by Nelson Estes, the
Chairperson. A new Chairperson was chosen, Darlene Sobota. 0
Distinguished Reviewers include: Charles Hammons, Texas Instruments;
John Reddan, SYSCON Corp., and Gary McKee, Martin Marietta. The E&V -
Policies Document will be expanded to include recommendations from
the E&V Workshop. This document will be prepared by the CAISWG,
reviewed by the E&V Team, and presented to Dr. Mathis for review and
comment. Projected work for the next quarter includes a draft of the
Assumptions Document and a redraft of the E&V Procedures Document,
including ISO terminology.

3.1.5 REQWG Status Report

The RLQWG Status Report was given by Betsy Baily, the Co-
Chairperson. Four Distinguished Reviewers were added to the group:
Helen Romanowski, Rockwell International; Raymond Sandborgh, Sperry
Corp.; Mike Meirink, Sperry Corp., and Robert Fritz, CSC.
Deliverables this quarter included Version 1.0 of the E&V
Requirements Document which should be completed by 30 September. A
lengthy discussion took place regarding slipped schedules versus
publication of incomplete but frequently updated documents. It was
generally felt that since the E&V documents are living documents,
properly caveated "draft" versions are preferred to overdue polished
versions.

Version 1.0 will include a list of assumptions. An attempt
will be made to define the components in a MAPSE. After 1 October,
the section on Product Quality Guidance will be developed. No - .

deliverables are due next quarter.

1-9

S- . .

Minutes 0
E&V Meeting
5-7 Sep 84

3.2 General Discussion

The team meeting dates for the next year were listed. Updates

to the E&V Plan as a result of this meeting were noted by Jinny. The
E&V delivery schedule was reviewed and modified to reflect actual
versus planned delivery dates. There was a lengthy discussion over
the possibility of moving the meeting dates up farther from the end I
of fiscal quarters. This would permit more time to ready quarterly
documents for delivery. This issue was not resolved. No more S
document reproduction will be provided to the Team. Most documents
will be available on the net or in hard copy to volunteer reviewers.
Recommendations for speakers at the December meeting were made by
Team members.

A recommendation was made to include more rationale behind S
major decisions briefed in the Working Group Status Report. The Team
and Reviewers agreed that this would be helpful.

A recommendation was also made for a separate meeting of the
Reviewers to discuss and consolidate their observations regarding .
the E&V effort. Jinny suggested that the mechanisms for implementing S
this recommendation be formalized and presented over the net for
review. Ray Sandburgh of Sperry Corp is responsible for this action
item.

The E&V meeting was adjourned.

.1..-

t- 10 : :"

-."-,-,.

Minutes
E&V Meeting
5-7 Sep 84

ATTENDANCE LIST
E&V Team Meeting, 5-7 September 1984

S
Jinny Castor Chris Anderson
AFWAL/AAAF AFATL/DLMM
Wright-Patterson AFB OH 45433 Eglin AFB FL 32542

Patrick Maher Mars Gralia
OO-ALC/MMECF Johns Hopkins University

Hill AFB UT 84056-5609 Applied Physics Laboratory
Laurel MD 20707

Don Jennings Jimmy Williamson
OC-ALC/MECE AFWAL/AAAF-2
Tinker AFB OK 73145-5990 Wright-Patterson AFB OH 45433

Marlene Hazle John Miller
MITRE Corp SM-ALC/MME(1)D
Bedford MA 01730 McClellan AFB CA 95652
Capt Albert Deese Capt Rick Contreras

ASD/ADOL HQ AFOTEC/LG55
Wright-Patterson AFB OH 45433 Kirtland AFB NM 87117

Major James R. Johnson Elizabeth Kean
AFWAL/AAAF-2 RADC/COES
Wright-Patterson AFB OH 45433 Griffiss AFB NY 13441 .0

Guy Taylor Douglas Olson, 2Lt
FCDSSA HQ AFCMD/SID
Virginia Beach VA 23461 Kirtland AFB NM 87117

Richard Fleming Betty Wills S

Aerospace Corp CCSO/SKXX
Los Angeles CA 90009 Tinker AFB OK 73145-5990

Mark Mears Nelson Estes
AFWAL/FIGLB ASD/AXTS
Wright-Patterson AFB OH 45433 Wright-Patterson AFB OH 45433 0

Greg Bettice Gary McKee
Naval Avionics Center Martin Marietta
Indianapolis IN 46218 M/S 0423, P.O. Box 179

Denver CO 80201

LCDR Brian Schaar Jack Kramer
Ada Joint Program Office Institute for Defense Analyses
Room 3d 139 (400 A/N Dr) 1801 N. Beauregard St
The Pentagon Alexandria VA 22311
Washington DC 20301

_e

i-) i1- 11

_5-5-5 L-i 5. 5 i k:- L1 '.. -5i-: L"-=?SLl'lL ' 5'LL-LlL.I L:.5::,'1:L 5 11155 1 - " i 1,1 L--L -.-'i.L:5-L i.5S =

Minutes 0
E&V Meeting
5-7 Sep 84

Gina Burt Amy Morganstern
AFALC/PTEC EG&G, WASCI

Wright-Patterson AFB OH 45433 8809 Sudley Rd
Manassas VA 22110

Marlow Henne Randal Leavitt

Harris Corp PRIOR Data Sci./P.N.D. Canada
GISD 39 Highway 7
150 Wickham Rd Nepean, Ontario 0
Malbourne FL 32901 K2H 8R6

Terry D. Humphrey James F. Parlier
NASA - Johnson Space Ctr General Dynamics
Mail Station EH-4 DSD/WC 0

r Houston TX 77058 P.O. Box 85808, MZ VP 5300
San Diego CA 92139

John Reddan Bard Crawford
SYSCON Corp TASC
3990 Sherman St 1 Jacob Way
San Diego CA 92110 Reading MA 01867 0

Charles (Bud) Hammons Tim Lindquist
Texas Instruments VPI
McKinney TX 75069 562 McBryde Hall

Blacksburg VA 24061

Helen Romanowsky Elizabeth Kruesi Bailey
Rockwell International IDA
Cedar Rapids IA 52498 1801 N. Beauregard St

Alexandria VA 22311

Darleen Sobota, ILt Doug Yarborough
AFWAL/FIGR GTE Gov't Systems
Wright-Patterson AFB OH 45433 1 Federal St

Billerica MA 01821

Bill Grabowski Bob Fritz
GTE Gov't Systems CSC
1 Federal St. 4045 Hancock St
Billerica MA 01821 San Diego CA 92110

Paul Reilly Raymond E. Sandborgh
Data General Corp Sperry Corp
4400 Computer Dr. CS/DSD
Westboro MA 01580 P.O. Box 64525

St Paul MN

1-12
. *~ . . . * * * -,

...-.. .---...

IMinutes 0
E&V Meeting

5-7 Sep 84

F Ronnie Martin mike Meirink
Georgia Institute of Technology Sperry Corp

- School of Information &Comp Sci CS/DSD
Atlanta GA 30332 P.O. Box 64525

St Paul MN

Paul Dobbs Georgeanne Chitwood
General Dynamics ASD/ADOL
Box 748, MZ 54044 Wright-Patterson AFB OH 45433
Ft Worth TX 76114

Dick Drake
r IBM/FSD

MANASSAS VA 22110

I1-1

APPENDIX J

EVALUATION CRITERIA FOR ADA COMPILERS

11 September 1984

J- 1

Table of Contents

Evaluation Criteria for Ada Compilers........................-3
Availability......................................-4

Capacity..-4
Configuration Management.........................j-60
Cost..-7
Documentation..................................-7
Efficiency.......................................J-8
Extendability...................................J-11
Granularity....................................J-11
Hardware.......................................J-11
Interfaes......................................J-12
Interoperability..................................J-12
Maintainability....................................J-13
Proprietary...................................-13
Rehostability...................................J-14
Retargetability...................................-140
Robustness................................J-15-
Test Availability..................................-15
Usability.......................................J-15

References...J-19
Appendix A......................................-20

Ada Fair '84 Tests................................J-20S
AVO Tests..-21
SRI Tests.......................................J-23
ATE Front End Tests..............................J-24
ATE Middle Parts Tests............................J-26
ATE Back End Tests..................................J-30-

J- 2

EVALUATION CRITERIA FOR ADA COMPILERS

11 September 1984

Author: Elizabeth Kean (Rome Air Development Center) in support of
the E&V Team

In June 1983, the AJPO proposed the formation of the E&V (Evaluation
and Validation) Task and a tri-service APSE E&V Team, with the Air 0
Force (Ai- Force Wright Aeronautical Laboratories (AFWAL)) designated
as the lead service. The purpose of the E&V Team is to develop the
techniques and tools which will provide a capability to perform
assessment of APSEs and to determine the conformance of APSEs to the
CAIS (Common APSE Interface Set).

In order to accomplish this goal, a criteria questionnaire was
developed and distributed at the SigAda meeting (30 July - 1 August
1984) in Hyannis, MA. Based upon comments received regarding this
questionnaire, the following list of evaluation criteria for Ada
compilers was composed.

The criteria/tests are designed to complement the Ada Compiler
Validation Capability (ACVC) test suite. The criteria are collected
according to the set of attributes defined in the Requirements for
Evaluation and Validation of Ada Programming Support Environments,
dated 17 October 1984. Compiler areas yet to be covered indepth
include the run-time system, program library tools, linking and
loading facilities, etc.

J-3
L 9

0

AVAILABILITY

1. Have there been any major software systems developed using this
compiler?

2. For each of the compiler's targets, approximately how many users
are there? To what degree have the targets been exercised?

3. Can the compiler be invoked in both an interactive and a batch
mode?

4. Can the compiler be invoked while using other APSE tools? (While
in the editor, for example.)

b. Are there any additionai tools supplied with the compiler (e.g.,
symbolic debugger, target simulator, downloader, linker, etc.)?

6. Are there significant compiler features that could be considered
above and beyond that specified in the Ada language specification?

CAPACITY

1i- -
2. What is the maximum number of errors detectable on a single line?2. What is the maximum number of errors detectable in a single ..
compilation unit?

3. What is the maximum number of Ada statements allowed for a single
compilation unit? How are statements to be counted for this purpose?

4. What is the maximum number of compilation units allowed for a
single file?

b. What is the maximum number of symbols allowed per compilation Sunit? -...

6. What is the maximum length allowed for a source line?
KNOWN TESTS:
(AIE)fenO8Ola, (AIE)fenO801b

7. What is the maximum size of the Intermediate Language that can be .
generated?

8. What are tne maximum number of elements allowed in an enumeration
type?

9. What is the maximum level of nesting in packages, loops, cases,
record type declarations, IF-statements, blocks, etc?
KNOWN TESTS:
Packages: (AIE)fenO807a, (AIE)fenO807b, (AIE)fen0807c-
Loops: (AIE)fenO8UOa, (AIE)fenO8O5b, (AIE)fenO8O5c
IFs: (AIE)fenO8O6a, (AIE)fenO8O6b, (AIE)fenO8O6c
U1locks: (AIE)fenO8O4a, (AIE)fenO8O4b, (AIE)fenO8O4c
Subprograms: (AIE)fenO8O8a, (AIE)fenO808b, (AIE)fenO8O8c,
(AIE)fenOBO9a

1-4 _

i~i-- .. . - - . .• . . ' . - ° - . . -. . . '- - . : ..*' ".' : - - L- : ' : ' . - - - . ' . " .-. : . 1 . "- ' "" - •- ' :

0

1U. What are the maximum number of operands in expressions?

11. What is the maximum number of WITHed units allowed?
KNUWN TESTS:
l6-199 WITHs: (AIE)fenO8O3a, (AIE)fenO8O3b, (AIE)fenO8O3c,
(AIE)fenO8O3d, (AIE)fenO803e

12. What is the maximum number of DIANA structures (i.e., symbol - -

table entries) imported for a single compilation?

13. What is the maximum number of tasks that can be in existence?

14. What is the maximum number of tasks that can be spawned for a
single program?

15. What is the maximum length of an identifier? .

lb. What is the maximum number of discriminants in a constraint?

17. What is the maximum number of fields in a record aggregate?

18. What is the maximum number of formals in a generic unit?

19. What is the maximum number of nested contexts?

2U. What is the maximum number of indices in an array aggregate?

21. What is the maximum number of parameters in a call?

22. What is the maximum depth of expansion of INLINE subprograms?

23. What is the maximum precision of the fixed point, floating point
and integer arithmetic?
KNOWN TESTS: .
(AaaFair84)cauchfl.ada, (AdaFair84)cauchfy.ada,
(AdaFair84)univ ar.ada, (AdaFair84)cauchun.ada, (AVO)MATHTEST

24. What is the maximum/minimum size of the run-time system
* with/without tasking?

2b. What is the size of the each of the phases of the compiler?

2 . What is the minimum memory required to execute the compiler?

27. Is LUW_LEVEL_ I supported?

28. Do SEQUENTIAL 10 and DIRECT 10 "Work as expected?" Under what

conditions, if any is USEERROR raised?

29. Do the compiler and runtimes implement non-blocking I/0 and
non-blocking operating system service calls?

. 30. What is the range of PRIORITY? What is the runtime task
scheduling algorithm?

31. Are any limitations imposed on the use of pragmas SYSTEMNAME,

J-5

.-. -. . - . . .- .. .~.. .. .-- . ° -.-- . -- *.- • . .-.

STuRAE _UNIT, and MEMORY SIZE?

32. What is the maximum number of overloadings per identifier?

33. Can generic bodies be compiled separately from their -

specifications?

34. Can any instances of erroneous execution be detected?

35. Can deadlock be detected?

36. What overhead is involved in context switching between tasks?
KNOWN TESTS:
(SRI)chain2, (SRU)chain5, (SRI)chainlO, (SRI)chain2O

37. How does the Ada compiler perform when compiling various
applications programs?
KNOWN TESTS:
(AdaFair84)bsearch.ada, (AdaFair84)random.ada, (AdaFair84)set.ada
(AVO.WORLDUF)directoryutility, (AVO)KPTOOLS, (AVO)FORMATTER,
(AVU)STUBBER

38. How larye is the compiler?

39. Is the compiler ever completely in memory?

4U. What is the value of each of the predefined attributes (e.g.,
INTEGER'FIRST, INTEGER'LAST, FLOAT'DIGITS, etc.)

41. What is the maximum number of users that can invoke the compiler
simultaneously? Has this number been verified?

CONFIGURATION MANAGEMENT (CM)

1. What is the general CM plan?

2. Who is responsible for CM (for the supplier)?

3. Are all the source and object modules for a complete version
available in one area (e.g., on a tape or a separately controlled disk
area)? Is this area accessible to only one person or anyone on the
project?

4. How are compiler fixes or enhancements incorporated into a new
version?

b. How are new versions controlled and released? Which of these
versions will be recertified or revalidated?

6. If the compiler produces code for more than one target, how are
common and machine-dependent modules controlled? For example, are
there conventions for naming common function modules for each target?

7. How are approved compiler changes incorporated into new versions?
(The change approval procedures).

J-6 5

,..- - -, ° ' ° . : °'°-.. .b....... °

8. Ooes there exist a list of all modules (including the run time
system) that are needed for a complete compiler version? (A version

description document).

CUST S

1. What are the costs of acquiring the compiler? These costs should
be given in terms of:

a. Does the cost include the installation and required
maintenance support?

b. Is source code or only object code supplied?

c. Costs of additional (non-supplier developed tools)?

a. Monthly (or periodic) additional maintenance fees?

e. Does the cost include receipt of new versions of the compiler
and needed tools?

f. Various cost options depending on licensing (-proprietary)
arranyements?

2. What is the estimated cost for a compiler rehost?

3. What is the estimated cost for a compiler retarget?

4. What do the costs for rehosting and retargetting include (test,
inteyration, installation, etc.)? -

DUCUMENTATION

1. Is a requirements document available? Verify the content and
quality.

2. Are complete design specifications available? Verify the content
and quality as follows:

a. An overview of the compiler design showing the major
structure and design.

b. Details of the compiler phases and passes.

c. Separate sections which outline the design of the host and
each target (to include the run time system(s)).

corn d. Is the design detail sufficient such that an experienced
compiler software engineer could maintain the compiler?

e. Are compiler design changes updated in the documents?

3. Is sufficient user documentation available for the host and each
target? Is it on-line?

J-7

.- S A i. .

4. Does the users (or reference) manual contain an Appendix F which

describes all implementation dependent characteristics?

t. Is the compiler release and compilation date identified on the
hard copy listiny? S

b. Is documentation available for any special tools that were used
for the compiler development?

7. Is documentation available for any separate tools that are needed
for compiler operation? 0

8. What are the procedures used to update the documentation as a
result of compiler changes? Who is responsible to verify thdt this is
done?

9. Are there any alternative structures suggested for the production S

of low cost low quality back ends and high quality bacK ends?

EFFICIENCY

(For the following set of questions, speed is the number of source "

statements per CPU minute.)

1. What is the speed of object code generation (from the beginning of
compilation)?
KNUWN TESTS: -
(AIE)benO7Ula •

2. What is the speed of the Front-End if it can be run separately?

23. What is the speed of the Back-End if it can be run separately?

4. What is the speed of listing generation? S

b. What is the speed of compilation with OPTIMIZATION=time?
OPTIMIZATION= space? OPTIMIZATION=none?

6. Uo the pragmas supported by the compiler, if any, impact the

compilation speed?

7. What target machine independent optimizations are performed? For
example, does the compiler perform constant propagation, constant
folding, common subexpression elimination, expression simplification,
strength reduction, range and constraint checks, removing unreachable

code, cross-jumping, task context switch minimization, code sharing

between generic instantiations, etc.?
KNOWN TESTS:
(AIE)benO3Ola, (AIE)benO3Olb, (AIE)benO3O2a, (AIE)benO3O2b,
(AIE)benU302c, (AIE)benO3O2t, (AIE)benO3O2e, (AIE)benO3O3a,
(AIE)benU3U3b, (AIE)benO303c, (AIE)benO303d, (AIE)benO3O3e,
(AIE)benO3O3f, (AIE)benO3O3g, (AIE)benO3O3h, (AIE)benO3O3i,
(AIE)benO3U3j, (AIE)benO3O3k, (AIE)benO3O3l, (AIE)benO3O3m,
(AIE)benU3U4a, (AIE)benO3O4b, (AIE)benO304c, (AIE)benO3O4d,
(AIE)benO3U4e, (AIE)benO3O4f, (AIE)benO304g, (AIE)benO4Ola,

J-8

..

• ".' ." " ." ,. . -. " "."- ." - .''.' - -. . " "-' f " . -' . '""..-" . -" .- ''- .. ''--.-- '--- .,' -" ".. . .' .

(AIL)0enU4U10, (AL)benU4U~a, (A[E)benO5Ola, (AIE)benO5Olb,
(AIE)benO5ulc, (AIE)ben0b01d, (AIE)benO5O2a, (AIE)benO5O2b,
(AlE)benu~u2c, (AIE)benO5O2d, (AlE)benO5O2e * (A E)ben0502f,
(AIE)benU5U2y, (AIE)benO5O2h, (AIE)benO5O2i, (AIE)benO5O3a,
(AIE)uenObU4a, (AIE)benO5O4b, (AIE)benO5O4c, (AIE)benU5O4d,
(A1E)ben~bO4e

6. What target dependent optimizations are employed?

9. What is the probable effect of optimization on the raising and
fandling of exceo.tions (ess LRM 11.6)?

10. To what extent does the user control the optimizations?

11. Can the user specify the use/non-use of specific optimizations?

1.How does using select alternatives affect the performance of the
executab~le code?
KNuWN TESTS:
(SRI) quard2, (SRI) guard2O, (SRI) guard20e, (SRI) guard20et, (SRI)
yuards2Ut, (SRI) guards2e

13. Uo idle tasks impact the performance of the executable code?
KNLJAN TESTS:
(SRI)idlel, (SRI)idle5, (SRI)idlelO, (SRI)idle2O

14 . Is it better to have many small tasks with s ingl 1e entry choi ces -

or a few large tasks with many select choices?
KNOWN TESTS:
(SRI)moretaSkS, (SRI)moretasksl, (SRI)moreselct, (SRI)moreselctr

15. Uoes the ordering of entry clauses in a SELECT impact execution
speed?
KNUWN TESTS:
(SRI)order3l, (SRI)order3lr, (SRI)order32, (SRI)orderl0O .

lb. If multiprocessing is supported by the implementation, are Ada
tasks mapped to a single underlying process, or is each task mapped to
a separate process?

17. If the target is a distributed system, how is "immediately"

defined for conditional entry calls?

18. Does the size of a parameter affect performance? *
KNOWN TESTS:
(SRI)passarrys, (SRI)passarryb, (SRI)passinout

1.Does the number of select choices affect performance?
KNOWN TESTS:
(SRI)select2, (SRI)select2e, (SRI)select20, (SRI)select20e

20. Can the Ada scheduler starve a task?
KNOWN TESTS:
(SRI)Schedtest

21. What is the size of the resulting object code for OPTIMIZE=none?
'PTIMIZE=svace? OPTIMIZEstime?

J -9 0_

22. What is the CPU time req4uiredi for execution of cude compiled witri
JPTIMIZE=none? OPT IMIZE~time? OPTIMIZE~sjace?
KNOWN TESTS:
(AVU.WORLOUF)eratos.r, (AVO.WURLDOF)float _test.r,
(AVU.WORLDUF)yenerator.r, (AVO.WORLDOF)io-test .r,
(AVO.WORLDOF)item body.r, (AVO.WORLDOF)item spec.r,
(AVU.W0RLDOF)1f disk_80.tex, (AVO.WORLDOF)lffpgmap.text,
(AVU.WURLDUF)1 ist body.r, (AVO.WORLDOF)sieve tasK.r,
(AVU.WORLDOF)sti nger.r, (AVO.WORLDOF)timing.Tr, (AVO.WURLDUF)tower.r,
(AVO.WORLDOF)tran spec.r, (AVO.WORLDOF.jugglingl)e ball 1.r.
(AVU.WORLDOF .juyyTinyl))lhand_- 1 .r, (AVO.WORLDOF .juggl in- 1)o -ball _1.r,
(AVO.WURLDOF.juygl ingi)r hand 1.r, (AVO.WORLDOF .juygl iny2)counterF.r,
(AVO.WORLDOF.juygling2)eVen bill.r, (AVO.WORLDOF.juygling2)get Jug.r,
(AVO.WORLDOF.juygl ing2)left-hand.r, (AVO.WORLDOF.juggl ing2)moni-tor.r
(AVU.WURLUOF.juyyling2)odd ball 1.r,
(AVU.WORLDUF.juygl iny2)print pos.r,
(AVO.WURLDUF.juyylin92)riyhthand.r

23. What is the difference in size between object code generated by
an Ada compiler as compared with other languages (e.g., Pascal, COBOL,
C, FORTRAN, Assembler, etc.)?

24. What is the difference in execution time between object code
generated by an Ada compiler as compared with other languages?

2t. What is the execution time (in CPU seconds) for file operations
(with TEXT 10, DIRECT_ 10, etc.)?
KNOWN TEST' :
(AaaFair84)char dir.ada, (AdaFair84)char pnum.ada,
(AdaF a ir 8 4) int i r .ada a, (Ad aF a ir 8 4c narte xt a d a ,
(AaaFai r84)i nt-text .ada

26. What is the execution time (in CPU seconds) for arithmetic and
l ogical operati ons? S
KNOWN TESTS:
(AaaFai r84)bool vec.ada, (AdaFai r84)floatvec.ada,
(AdaFair84)intvec.ada, (AVO)AHL, (AVO)AUSSIE, (AVO)BASEMATH, (AVO)ADD,
(AVO)MULT, (AVU)PUZZLE, (AVO)SEARCH, (AVO)SIEVE,
(AVO)SYNTHETIC(Whetstone), (AVO.MARK)ADO, (AVO.MARK)MULT,
(AVO.MAHK)PUZZLE, (AVO.MARK)SEARCH, (AVO.MARK)SIEVE, 0
A VO.MARK)S YNTHETIC (Whet stone)

27. What is the execution time (in CPU seconds) for simple procedures
with scalar parameters?
KNOWN TESTS:
(AdaFair84)proccal.ada

28. What is the execution time (in CPU seconds) for a simple
rendezvous?
KNOWN' TESTS:
(AdaFai r84)rendez.ada

29. What is the effect on code size and execution time of the pragma .

SUPPRESS?

30. What is the effect on code size and execution time of using

J-1o

UNLHLCKEDDEALLOCATION vs. pragna CONTROLLED vs. neither?

31. What is the effect on code size of a DEBUG option, if is exists?

32. What is the procedure calling overhead for procedures and S
functions?
KNOWN TESTS:
(AdaFair84)ackerman.ada, (AVO)ACKER, (AVO.WORLDOF)ackernan.r

33. Are there Ada features that produce more efficient object code
with respect to time and space? 0
KNOWN TESTS:
(AdaFair84)qsortpar.ada, (AdaFair84)qsortseq.ada

EXTENDABILITY

I. What were the original design goals of the compiler?

a. Was the design intended for a particular class of users?

b. Are any specific applications envisaged?

2. Is the compiler is written in Aaa, were the use of certain
language constructs avoided (e.g., tasking, generics, real
arithmetic)? If so, which ones and why?

3. If the compiler is written in Ada, has it successfully recompiled
itself? ,. .-

.t s e 1 f_?

4. Were any special tools such as a compiler-compiler, translator
writing systems, etc., used during the development. If so, are they
available to possibly construct additional tools?

a. Do these tools generate a source program of the compiler or
ao they translate directly into object code?

b. If these tools do not generate an Ada (or other language)
program, how can the tools be retargeted?

c. What languages are the tools written in?

GRANULARITY

1. What are the major compiler phases? What phases are in memory as
the compilation progresses?

2. To what degree are the components of the compiler separately
executable tools? Is their use documented?

3. What parts of the compiler are seen as useful in building other 9
tools?

HARDWARE
J-11

1. What are the host/taryet pairs for tne compiler?

1. For each target, does the compiler directly output (relocatable)
object code?

3. For each target, does the compiler output assembly language? Is
it a standard version?

4. What is the character set of the host? of the target?

b. Are haraware machine dependencies clearly identified in both the
code and documentation?

6. Is the compiler designed to use virtual memory?

7. Is the compiler designed to take advantage of a multiprocessing
implementation? (Was the compiler designed to use multitasking?)

6. Are hardware dependencies concealed by module interfaces?

9. Does the compiler support distributed machine targets? If so,
which ones?

INTERFACES

1. Is the major design interface to a KAPSE or the host operating
system? -

2. It the interface is to a KAPSE, what KAPSE facilities does the
compiler use?

3. Does the compiler operate in a particular APSE? If so, what APSE
(or MAPSE) tools does it require, if any? -

4. If not part of an APSE, what characteristics of the host operating
system does the compiler rely on? Are all such system dependencies
concedled behind module interfaces?

D. Which interfaces are regarded as significant for rehosting or
retdrgeting?

6. What other tools (e.g., symbolic debugger) does the compiler
interface with?

a. To what extent are the interfaces documented? •

b. Can alternative tools be written conforming to these
interfaces?

INTERUPERABILITY i
1. What compiler generated information is available to other tools?
Symbol table? Cross-reference table? Intermediate forms? Listing
outputs?

J-.12 O -I2 ' '" "'

-..- ..- .- ." -..- .- --.-" "-. / ., .-' -" '-. -" -.- --'. .. --.-% -' .-..- .- .- -' .-' ..' .-.i '.. .'.. '..', --.. -.-..- .. .- -" . -. -. , ... -. , -. -- .-,
... "........................"................_................" .- " " " ._ • - - . . -- •- - .-.--

2. Does the compiler share, or make use of, othe'r APSE (or operating
system) tables or information?

MAINTAINABILITY

1. What language(s) is the compiler written in?

2. Are instructions available to enable a non-compiler person to
install the compiler on an identical host system?

3. Are the procedures for complete compiler generation (from source
to executable) documented?

4. What arrangements are available for maintenance? Such
arrangements can range from postal service to an on-call maintenance
staf f.

5. What is the quality of maintenance support?

a. Designated persons for maintenance contract?

b. Availability of maintenance documentation? .0

c. Telephone query service, visits by supplier staff, courses,etc? "

6. What are the arrangements for charging for maintenance and/or
support of the compiler? -

PRUPRIETARY

I. Can a user install the compiler, or must the supplier do the
installation? -

2. Are there any proprietary restrictions on compiler release (e.g.,
no source supplied, data rights, etc.)?
3. Are there any restrictions on special (non-supplier developed)

tools needed for compiler operation? Also, for any optional tools
thdt may be useful?

4. Does the supplier allow others to perform a rehost or retarget?

5. Under what circumstances may the source be made available for a
rehost or retarget?

b. What are the licensing arrangements for the compiler (e.g., at how
many sites can the compiler be used)?

7. What agreement does the user have to sign before the compiler may
be supplied to others?

8. Can a license to distribute the compiler to others be bought or
leased? What Parts of the compiler (run time system, packages,

J-13 9
K '- . "-. '.".-.

separate tools, etc.) can be distributed? Can source be included?

9. Can a license to use the compiler be bought outright or leased?

10. What are the arrangements (if any) for the release of information
about the compiler's internal structure?

11. Are there any restrictions on the use and/or distribution of
sottware produced by the compiler? It should be noted that the
sottware proauced often contains a run time system delivered by the
compiler supplier.

REHUSTABILITY

1. Has the compiler been rehostea?

2. What module (or modules) of the front end (machine in-dependent)
need to be modified for the rehost?

3. Is there a manual which describes the steps necessary to renost
the compiler?

4. Are systeml dependencies adequately isolated and documented?

b. Is there a kit of tools and/or components available to help with
the renosting task?

b. Is the compiler sufficiently modular to allow implementation of
critical parts (such as major data structures) to he easily altered
for the rehost task?

7. Is an estimate of time given for the rehost?

RETARUETABILITY

1. What modules of the back end (machine dependent) need to be
modified for a retarget?

2. What modules of the front end need to be modified for a retarget S
and what are their interfaces?

a. What techniques are used: Package standard, parameter file,
a special package that is linked in, etc.)? Hopefully, this is not
wired in to the compiler.

3. Are there any automated tools to aid in the retarget process?

4. Is an estimate of time given for the retarget task?

b. Is there a manual describing the procedures for retargeting?
Possibly with examples. _

b. For the intermediate language retargeting interface, is the
intermediate language tree structured, linear, etc?

J-14

S.

Is there more than one level of intermediate language at which
retaryetting is carried out?

8. For the retarget process, what assumptions are made in the design
of, and requirements of, the run time system (e.g., tasking monitor,
storage allocation scheme, etc.)? 0

9. For a retarget, do the presence of other tools in the compilation -I
system or APSE affect the back end?

ROBUSTNESS

1. What safenuards are implemented for protection and recovery
against unforeseen system, user and its own failures? Data
protection? Internal exception handlers? Trace back facility?

2. As more than one simultaneous user invokes the compiler, by how S
much does the mininum size of memory needed to run the compiler
increase?

3. Are any resources other than primary and secondary storage needed
to invoke the compiler?

4. Are compiler phases overlaid to reduce memory occupancy? If so,
are any requirements placed on the system?

TEST AVAILABILITY -,

1 . What tests are available from the supplier to verify compiler
operations?

a. Are the tests documented in a test plan? ,.

b. Are instructions for use available?

USABILITY
1. If the compiler interface is to the host operating system, under
which operating system version (or release) does the compiler operate?

Also, which target(s) operating system(s)?

2. If the compiler interface is to an APSE, under what version (or
release) of the APSE does the compiler operate?

3. What are the values outside the range of safe numbers for real -
t y p e s ?. . . - i

4. Are there any restrictions on the use of the generic procedure

UNCHECKEDDEALLOCATION?

t. Are there any restrictions on the use of the generic procedure S

UNCHECKED_CONVERSION?

b. Does the compiler generate a history file which records source

J-15 -

... . :. -. ' :. . .. -Z ;. -..'.. . ..:'.

file name, compilation unit name, program library name, owner(s) of
each and the date/time of the compilation?

7. Does the compiler record the versions of all compilation units
used in the compilation? S

6. How many passes over the code (source and IL) does the compilermake? ---'-

9 What compiler options are available? For example, can the user A
specify the following options: no semantics, no code, comments, 0
looKanead, optimize (off, space, time, etc), choice of runtime
Kernels, compiler maintenance, compiler new version of package
STANOARD, debug, main program identification, prettyprint source,
provide user with traceback information for unhandled exceptions, etc?
KNJWN TESTS:
(iAIE)fenObUla, (AIE)fenObO2a, (AIE)fenO5O3a, (AIE)fenObO3b,
(AIE)fenO5O3c, (AIE)fenO5O3d, (AIE)fenOSO3e, (AIE)fenO5O3f,
(AIE)fenObO4a, (AIE)fenO5O4b, (AIE)fenO504c, (AIE)fenOSO4d,
(AIE)fenO5O4e, (AIE)fenOSO4f, (AIE)fenO505a, (AIE)fenO5O5b,(AIE)fenOb06a, (AIE)fenO506b, (AIE)fenO50bc, (AIE)fenQO 6d,
(AIE)midOS01a, (AIE)midO502b, (AIE)midO502d, (AIE)mid0503a,

(AIE)benO2Jla, (AIE)midO5O b, (AIE)midO501c, (AIE)midO52c, -
(AIE)uenOlO2a (AIE)midO502a, (AIE)benOlOla, (AIE)benO2O2a

10. What control does the user have over listings? For example, can
the user control: listing source text, reformatting the source,
listing text of an instantiated generic unit, listing private parts of
packages, listing attributes of all symbols in source text, listing .
cross reference information, listing statistics, listing
machine/assembly code, listing the intermediate language generated,
listing diagnostics, listing use of machine-dependent features,
pragmas, etc.?

11. Does abnormal termination leave a consistent program library? If
not, now can a user restore consistency? Are checkpointing and/or
transaction updating supported?

12. Is the intermediate language generated available for other tools?

13. Can the source be reconstructed from the intermediate language 0
(e.g., DIANA, or Abstract Syntax Tree)?

14. Are all LRM praymas properly recognized or handled? What
implementation dependent pragmas are supported, if any?
KNUWN TESTS:
Prayma OPTIMIZE: (AIE)midO5O3a, (AIE)midO5O3b 0
Pragma STATIC: (AIE)midO504a, (AIE)midO5O4b
Prayma INLINE: (AIE)midO5O5a, (AIE)benOSO5a, (AIE)benO5O~b

1b. Are the parameter passing methods and subprogram calls handled
efficiently?
KNOWN TESTS:
PASSED BY VALUE (<= 64 BITS): (AIE)midO7Ola, (AIE)midO7Olb
PASSED BY VALUE (>= 64 BITS): (AIE)midO702a, (AIE)midO7O2b
SELECTED PASSING METHODS: (AIE)midO7O3a, (AIE)midO7O3b
PASSED BY REFERENCE (DYNAMIC): (AIE)midO7O4a, (AIE)midO7O4b

J-16 •

.'

lb. Are there any restrictions on unchecked conversions? on

unchecked deallocation?
KNOWN TESTS:
(AdaFair84)lowlev.ada O

17. Will the compiler generate code to automatically trace the
execution of a statement, group of statements, or module?

18. Will the compiler generate code to track changes in value of any
variable and print changes?

19. Will the compiler generate code to provide statistics on the
execution time/frequency of usage of any segment of code?

20. Will the compiler generate code which will trace the occurrence
of exceptions and the levels at which they are handled?

21. If representation specifications are implemented, are there any
restrictions? If so, what are they?
KNOWN TESTS:
(AaaFair84)derived.ada

22. What is the accuracy of the error message positioning?

23. What is the time consumption for error detection and recovery?

24. What is the clarity of error messages in terms of the language?
KNOWN TESTS: S
(AdaFair84)friend.ada

2b. Will the compiler produce an executable object program even if
errors are present? If so, under what conditions and what is the
eftect of executing a source statement that contains an error?

26. Are steps taken to avoid "cascading" of compilation errors?

27. What warning messages does the compiler print? For example,
warning for ignored pragmas, warning for an unusually expensive
construct, etc.? Is the user able to switch off certain warning
messayes? S

28. Can the user control the level of error which will abort the
compilation?

29. Can the user halt the compilation after some stage, examine the
current state of the compiler output and restart the compiler?

30. Is the compiler re-entrant?

- 31. Does using the debugger, if one exists, require compiling the
software with a special DEBUG option?

32. Can two or more compilations access and/or update the same
library simultaneously? If so, how is consistency maintained?

33. Can any instances of erroneous execution be automatically

J-17

::- -. --'.- .'- . ..- - .-. ' - . - - - - -- : . .
E L L.'.- . -. .. _ A-.'. .L- -i - - : . : , :S - . .

I 0
detectea? How are such instances handled?

1 0

I 0

r 0

S

b. -~

i 0

i ~0

p 0

I 0

I 0

J-18
I

. .

...

L. -..-..........................

REFERENCES

1. Generic APSE Evaluation Questions, General Dynamics

2. Ada Integrated Environment (AIE) Test Procedures for the Compiler -

Front-End, Intermetrics, Inc. (Available through RADC upon completion
of tne AIE contract)

3. AIE Test Procedures for the Compiler Middle-Part, Intermetrics,
Inc. (Available through RADC upon completion of the AIE contract)

4. AIE Test Procedures for the Compiler Back-End, Intermetrics, Inc.
(Available through RADC upon completion of the AIE contract)

5. AIE Test Procedures for the Compiler Subsystem, Intermetrics, Inc.

(Available through RADC upon completion of the AIE contract)

b. SRI Tests (Available on USC-ECLB<EV-INFORMATION>)

7. AdaFair 84 Tests (Available on USC-ECLB<EV-INFORMATION>)

8. World of Ada Tests (Available through AJPO)

9. Ada-Europe Guidelines for Ada Compiler specification and selection
by J C D Nissen and B A Wichmann (et al) (ACM Ada Letters, July,
August 1983)

10. Mike Burlakoff, University of Missouri

11. Requirements for Evaluation and Validation of Ada Programming
Support Environments, Version 1.0, XX XXX XX.

**It is the intent of the E&V Team to eventually make as many tests as

possible available through EV-INFORMATION.

0

J- 19

.. 2

APPFNOTX A S

ADA FAIR '84 TESTS

acKerman.ada recursion, procedure calling overhead
boolvec.ada time for "AND" operation on boolean vector
bsearch.ada generic binary search
cauchfl.ada floating point accuracy
cauchfy.ada fixed point accuracy
univar.ada universal real and integer arithmetic
caucnun.ada test universal arithmetic pazkage
chardir.ada time for file operations using DIRECT 10 with characters .
charpnum.aaa time for file operations using TEXT_ IU and

ENUMERATION 10 with characters
char text.ada time for fiTe operations using TEXT-IO with characters
int dir.ada time for file operations using DIRECT I0 with integers
int-text.ada time for file operations using TEXT I" with integers
conprod.ada tasking performance using buffering-task
derived.ada inter conversion of derived types with different

representations
floatvec.ada time for adding elements of a large floating point

vector
intvec.ada time to add elements to a large integer vecto-r
friend.ada friendliness of compiler - warnings,exceptions
lowlev.ada test length of clauses and unchecked conversion
proccal.ada time for simple procedure calls with scalar parameters
qsortpar.add compare parallel and sequential sort algoritnms
qsortseq.ada compare parallel and sequential sort algorithms
random.aaa random numoer generation, generate linear congruential

sequences 7,
rendez.aaa time for simple rendezvous
se t. a aa implementation of sets
snarea.ada taskiny to provide shred access to global variables

J--20

.' .-

AvJ TEST- ,

AC K R acKerman tunction
/AHL test arithmetic and ran'lom numb er
AUS IE machine arithmetic
BASEMATH simulation of base numoer arithmetic for comnaring
CUMP check assumptions about behavior of cnmputer 0

CL)MPA declarations - separate statements and lines
CUMPb declarations - one statement and many lines
COMPC assignments - several per lin '-- "

COMPO assignments - one per line
CJMPE alternating comments ano assignments - one per line
CUMPF comments followed by assignments - one per line S
CUMPG tests linearity, alternatin 5 comments and assignmants
CU14PN null procedure
K u l.iPT with and use

CUMPZ test program - 1 assi nment I declaratinn
MARK set of benchmarks

AUD simple addition S
MULT simple multiplication
PUZZLE move pieces
SEARCH find character string
SIEVE byte prime number benchmark
SYNTHETIC synthetic benchmark

MATHLIB elementary math functions S

MATHTEST test elementary math functions
KPTOOLS insulate "software tools" from system dependencies
FORMATTER pretty printer system - put code in military standard
STUBBER creates package bodies from text
WORLDUF set of thirty-nine benchmarks
ackerman.r enumeration types, non-primitive recursion,

speed requirements, space requirements
ambiyuity.r overloading, disambiguation, package linkage,

separate compilation
dir body.r locate, insert, delete, create - item/dictionary
dir spec.r directory functions - create, delete, change, add,

display, scan
dir util.r create and manipulate directory using directory

- functions
eratos.r iterative statements, basic arrays, speed of

executi on
float test.r floating points with transcendental functions
generator.r separate procedure specifications and body

specifications
io test.r I/0 capabilities
item body.r get, display item
item spec.r get, display, compare items
if dTsk 80.tex disk functions
If_pgmaj7.text page functions

list_body.r generics, private types, pragmas, exceptions
list test.r generics, overloading, private types, pragmas,

exceptions
manager.r generics, overloading, private types, pragmas,

exceptions
overload.r ambiguous overloading of "
resolution.r overloading

J- 21

-. i.----•- -. - ° ' ,, -. - ,, . ..- . - ' . -. .. . -. ' -.-. . .' ..'' -' -. > ,. - '.- , --- . I-,-> **,, .*- -,...-'-,.,> 'L ,L-',

n r C sL i%vm.JIIIOII a ib

package
roman_body.r overloading, disambiguation, with RomanNumerals

package
sieve body.r body of sieve task
sieve task.r solve sieve of Erotothenes problems using tasking
s t inye r .r basic string operations
t im in g .r timing functions
tower.r records, discriminants, non-primitive recursion,J
tran-body.r body of transcendental functions using iteration
tran_spec.r number crunching abilities

jugylingl.r tasking, entry calls, exceptions, subunits,

single compilation of multiple units
e ball1 1 .r t as k ing subunits
1-han dlI.r t as k in g, subunits
oball 1.r tasking, subunits
_ _ndI~ tasking, subunits

juggliny2.r t a sk ing9, selective waits, families of entries,
exceptions, subunits, separate compilations

counter.r s ame a s u g g Iing92 .r
even ball .r s ame a s jugl in g 2 .r
get-jug.r same as juggling2.r
left _hand.r same as juggling2.r
monito ~ s ame a s juggling2.r
odd b all _1 .r same a s juggl ing 2 .r
print pos.r same as juggling2.r
ri ght _hand .r s ame a s juggl in g2 .r

J-22-

SRI TESTS S

ALL TESTS ARE ADA TASKING TESTERS

DETERMINE OVERHEAD IN CONTEXTS SWITCHES BETWEEN TASKS
chain2 with chain length of two
chainb with chain length of five ,
chainIO with chain length of ten
chain2U with chain length of twenty

DETERMINE IF GUARDS ON ENTRY STATEMENTS IMPACT PERFORMANCE
guard2 with one guard set to true and one set to false
yuard2O with one guard set to true and nineteen set to false
guard2Oe witn one guard set to true and nineteen set to false
guard2Oet with all guards set to true
guards20t with all guards set to true
guards2e with one guard set to true and one set to false

DETERMINE WHETHER IDLE TASKS IMPACT PERFORMANCE
idlel with one idle task
idle5 with five idle tasks 0
idlelU with 10 idle tasks
iale2U with twenty idle tasks

DETERMINE IF IT IS BETTER TO HAVE LOTS OF LITTLE TASKS WITH SINGLE
ENTRY CHOICES OR A FEW BIG TASKS WITH MANY SELECT CHOICES
moretasks master task calls twenty slave tasks with single entries
moretasksl each task has a single entry embedded in a select

statement
moreselct master task calls each entry in a single slave task
moreselctr entries are listed in opposite order from calling order

DETERMINE IF ORDERING OF ENTRY CLAUSES IN A SELECT MATTERS
order3l with thirty-one choices
order3lr entries are called in reverse order of select statement
order32 with thirty-two choices
oraerIOU with one hundred choices

DETERMINE IF SIZE OF PASSED PARAMETER MAKES A DIFFERENJCE
passarrys with small "in" array of integers
passarryb with larger "in" array of integers
passinout with large "in out" array of integers

DETERMINE IF THE NUMBER OF SELECT CHOICES MAKES A DIFFERENCE
select2 with two choices, desired entry is first
select2e with two choices, desired entry is last
select2O with twenty choices, desired choice is first
select20e with twenty choices, desired choice is last

DETERMINE IF ADA SCHEDULER MAY STARVE A TASK
schedtest with two entry select statements used independently by

three other tasks

J

...

Air rr '.\.a [,,..•.
L .J 11 I L.. I

SYNTAX ERRORS
(AIE)fenO3Oa check, frequent comment syntax mistakes
(AIE)fenO3O2a checks miscellaneous common spelling mistakes
(AIE)fenO3O3a checks common Ada/Pascal errors 0
(AIE)fenO3O4a checks common errors in subprogram specifications
(AIE)fenO3O5a checks common errors in subprogram declarations

COMPILER OPTIONS
(AIE)fenUbO1a verifies that default options are as specified
(AIE)fenOU2a verifies that specified options take on the given

values •
(AIE)fenO5O3a checks the NOSEM option

(AIE)fenOSO3b checks the NOSEM option
(AIE)fenOb03c checks the NOSEM option
(AIE)fenObO3d checks the NOSEM option
(A:E)fenU5U3e checks the NOSEM option
(AIE)fenObu3f checks the NOSEM option
(AIE)fenO5O4a checks the NOCODE option
(AIE)fenO5O4b checks the NOCODE option
(AIE)fenObO4c checks the NOCODE option
(AIE)fenO5O4d checks the NOCODE option
(AIE)fenObO4e checks the NOCODE option
(AIE)fenO5O4f checks the NOCODE option
(AIE)fenO5O5a checks the COMMENT option
(AIE)fenOSO5b checks the COMMENT option
(AIE)fenO5O6a checks the LOOKAHEAD option
(AIE)fenOSO6b checks the LOOKAHEAD option
(AIE)fenO5O6c checks the LOOKAHEAD option
(AIE)fenO5O6d checks the LOOKAHEAD option

CHECK CORRECT MEANING OF DOT "." AND TIC "'"
(AIE)fenO7Ola verify dot as a delimiter in numeric range
(AIE)fenO701b verify dot as part of a numeric literal
(AIE)fenO7O1c verify tic in attribute selection
(AIE)fenO7OId verify tic in type qualification
(AIE)fenO7Ole verify tic in character literal

CHECK HIDING
(AIE)fenO7O2a by nested blocks
(AIE)fenO702b by loop parameters
(AIE)fenO7O2c by nested packages
(AIE)fenOlO2d using the extended scope of a pkg spec through its

corresponding body
(AIE)fenO7O2e with nested (non-overloaded subprograms
(AIE)fenO7O2f within a record type declaration
(AIE)fenO7O2g by an object renaming declaration
(AIE)fen0702h by nesting a subprogram declaration
(AIE)fenU702i by a formal parameter of nested subprogram _

declaration
(AIE)fenO7O2j by nesting a task definition
(AIE)fenO7O2k of an object by a subprogram declaration with the

same identifier
(AIE)fenO7O2l checks hiding of a predefined type from STANDARD

CHECKS OVERLOADING ENTITIES _.
(AIE)fenO7O3a using a procedure and a function

(AIE)fen07O3b using procedures with different numbers of parameters
* (AIE)fenO7O3c using functions with different numbers of parameters

J-24

. *

(AIE)fenO7O3d using procedures with different base types of 6
parameters

(AIL)tenU/U3e using functions with different base types of
parameters

(AIE)fenO7U3f using functions with different return base types
(AIE)tenO7U3g using procedures with differently ordered parameters
(AIE)fenO7U3h overloading an operator

CHECKS USE CLAUSES
(AIE)fenO7O4a using two nested packages, one which is USEd - -

(AIE)fenO7O4b using nested package which has an identifier that -

should not hide a directly visible identifier
(AIE)fenO7O4c using nested packages with dot selection -

(AIE)fenO7U4d using separately compiled pkgs using WITH and USE
CHECKS VERY LARGE SOURCE LINES

(AIE)fenO8O1a verifies line length of 255 allowed

(AIE)fenO8Ulb verifies lin- length of >255 flagged

CHECKS LARGE NUMBERS OF VMM SUBDOMAINS
(AIE)fenOSU3a opens 198 subdomains using a WITH chain 197 units
(AIE)fenO8U3b opens 199 subdomains using a WITH chain 198 units
(AIE)fenO8O3c opens 200 subdomains using a WITH chain 199 units
(AIE)fenO8O3d opens 199 subdomains using a WITH chain 196 units

with 2 nested units
(A1E)fenO8O3e opens 200 subdomains using a WITH chain 197 units

with an indirect WITH and a subunit •

CHECK OVERFLOW OF PARSE STACK OR STATE STACK OF THE PARSER
(AIE)fenO804a using nested block statements level 5
(AIE)fenU8U4b using nested block statements level 10
(AIE)fenO8U4c using nested block statements level 15
(AIE)fenO8Oba using nested loop statements level 5
(AIE)fenO805b using nested loop statements level 10
(AIE)fenO8O5c using nested loop statements level 15
(AIE)fenO8Oba using nested if statements level 5
(AIE)fenO8O6b using nested if statements level 10
(AIE)fenO8O6c using nested if statements level 15
(AIE)tenO8U7a using nested package statements level 5
(AIE)fenU807b using nested package statements level 10 0
(AIE)fenO8O7c using nested package statements level 15
(AIE)fenO8O8a using nested subprogram statements level 5
(AIE)fenO8O8b using nested subprogram statements level 10
(AIE)fenO8O8c using nested subprogram statements level 15
(AIE)fenO8O9a us ing WITH, USE, variable decls, arithmetic and

logical expressions which are not quickly resolvable S

J-25

. *

. - .. '..
___________ _________ ,

AIE MiDDLE PART TESTS

CHECKS GENERIC INSTANTIATIONS
(AIE)midO3Ola verify Diana is not modified if no generic

instantiation .0
(AIE)midO3O2a verify instance body created for instantiation is

correct Diana
CHECK GENERICS COMPILED AT DIFFERENT TIMES IN VARIOUS ORDERS

(AIE)midO3O3a generic procedure declaration, body and
instantiation (single compilation)

(AIE)midO3U3b generic procedure declaration, instantiation, and -
body (single compilation)

(AIE)midO3O3c generic procedure declaration, body and
instantiation (separate compilation)

(AIE)midO3U3d generic procedure declaration, instantiation and
body (separate compilation)

(AI-E)midO303e generic procedure declaration, its package body
containing the body and an instantiation - main
proc using the instantiation (separate compilation)

(AIE)midO3O3f generic procedure declaration, its package body

containing the generic body stub and an
instantiation, the generic body subunit (main proc -

using the instantiation)(separate compilation) S
(AIE)midO3O4a generic package declaration, body and instantiation

(single compilation)
(AIE)midO3O4b generic package declaration, instantiation, and body

(single compilation)
(AIE)midO3U4c generic package declaration, body and instantiation

(separate compilation) •
(AIE)midO3O4d generic package declaration, instantiation and body

(separate compilation)
(AIE)midO3O4e generic package declaration, its package body

containing the body and an instantiation - main proc
using the instantiation (separate compilation)

(AIE)midO3O4f generic procedure declaration, its package body
containing the generic body stub and an
instantiation, the generic body subunit (main proc
using the instantiation)(separate compilation)

(AIE)midO3Oba generic procedure declaration, instantiation, and
main procedure (single compilation)

(AIE)midO3Obb generic package declaration, instantiation and main
procedure (separate compilation)

(AIE)midO3O6a generic package declaration, instantiation, and main
procedure (single compilation)

(AIE)midO3O6b generic package declaration, instantiation and main
procedure (separate compilation)

CHECK SHARING OF GENERIC BODY INSTANTIATION REPRESENTATIONS
(AIE)midO3O7a check that 'in' actual parameters match
(AIE)midO3Oba check that 'in out' actual parameters match
(AIE)midO3O9a check that integer type actual parameters match
(AIE)midO31Oa check that floating point type actual parameters

match (verifies when they have the same amount of
storage)

(AIE)midO31Ob check that floating point type actual parameters
match (verifies if they have identical rep specs)

(AIE)midO311a check that fixed point type actual parameters match

J-26 -

• "i- . " "1i'."i
•

. ' " ""
°

- " '" " " ""
°

" " '..... ."."..
.

.. ."."..
"

. .
° "

*~. " - - • -.- . . " ' ".• " ". . - ' ' ." ., . -, -

(verifies when they have the same amount of storage) .
(AIE)midO311b check that fixed point type actual parameters match

ver1ties it tney nave identical rep specs)
tAIE)midO312a check that discrete type actual parameters match

(verifies when they have the same amount of storage)
(AIE)midO312b check that discrete type actual parameters match

(verifies if they have identical rep specs)
(AIE)midO313a check that access type actual parameters match

CHECK CROSS REFERENCE INFORMATION TO si refs ATTRIBUTE OF DEF IDs
(AIE)midO4Ola which are subtypes, types, and variables
(AIE)midO4Olb verify no information is added when LIST => NOXREF
(AIE)midO4Olc which are procedures, functions, operators,
(AIE)midO4Old which are labels and packages
(AIE)midO4U1e verifies references are not included from uses in

other units
(AIE)midO4Olf when LIST => XREF

CHECK CROSS REFERENCE INFORMATION TO si calls ATTRIBUTE UF DEF IDs
(AIE)midO4O2a when subprograms invoked from within subprograms
(AIE)midO4O2b check no information is added when LIST => NOXREF S
(AIE)midO4O2c when subprograms and operations invoked within

subprograms, operations and packages
(AIE)midO4O2d when invocations from a package specification and

boady
CHECK ACROSS REFERENCE INFORMATION TO siexternalrefs ATTRIBUTE OF

A COMPILATION UNIT NODE
(AIE)midO4O3a using a procedure compilation unit
(AIE)midO403b verify not si _external refs added if LIST => NOXREF
(AIE)midO4O3c using package compilation units
(AIE)midO4O3d using subunit compilation unit
(AIE)midO403e using a function body compilation unit -

(AIEmidO4O3f using a procedure specification compilation unit
CHECK CROSS REFERENCE INFORMATION TO siglobal_refs ATTRIBUTE OF A

BLOCK OR BODY NODE
(AIE)miaO404a using a procedure body
(AIE)midO4O4b verify no information idded if LIST => NOXREF
(AIE)midO404c using a function body
(AIE)midO4O4d using a block statement
(AIE)midO4O4e using a package specification and body

VERIFY VALUE GIVEN TO THE si labelea ATTRIBUTE OF STATEMENTS
(AIE)midO4O5a using assignment, goto and null statements
(AIE)midO4Obb using if, loop and exit statements
(AIE)midU4U5c using block and case statements
(AIE)midO4Obd using procedure calls and return statements

VERIFY VALUE GIVEN TO THE si context ATTRIBUTE OF NAME EXP NODES
(AIE)midO4O6a those that should receive ADDRESS CONTrXT value
(AIE)midO4O6b those that should receive FLOW CONTEXT value
(AIE)midO4O6c those that should receive PARAMETER CONTEXT value
(AIE)midO4O6d those that should receive VALUE CONTEXT value

VERIFY VALUE GIVEN TO THE si opt level ATTRIBUTr OF A BODY OR BLOCK
(AIE)midObOla using procedure Eody without a pragma

(OPTIMIZE=>NONE)
(AIE)midO5Olb using procedure body without a pragma

(OPTIMIZE->TIME)
(AIE)midObOlc using procedure body without a pragma

(OPTIMIZE->SPACE)
(AIE)midO5O2a using procedure body with pragma OPTIMIZE(SPACE)

(OPTIMIZE->TIME)

J-27

- . r r " - =-

(AIE)midO5U2b usinq block statement with nested Praomas 0
OPTIMIZE(SPACE; and OPTIMIZE(TIME)
(OPTIMIZE => NONE)

(AIE)midO5O2c using package spec and body with pragma
OPTIMIZE(TIME) (OPTIMIZE=>SPACE)

(AIE)midO5O2d using nested block statements with pragma
OPTIMIZE(SPACE) (OPTIMIZE=>NONE) .

CHECK IMPROPER USES OF PRAGMA OPTIMIZE
(AIE)midObO3a using second pragma OPTIMIZE in a declarative part

(OPTIMIZE=>NONE) '..,

(AIE)miaOSO3b prayma OPTIMIZE cannot be placed in package
specification

VERIFY THE AIE DEFINED PRAGMA STATIC 0
(AIE)midO5O4a verify call frame for each of subprogram arguments

is allocated static storage
(AIE)midO5O4b verify error when there is dynamically sized local

VERIFY PRAGMA INLINE
(AIE)midOSU5a verifies subprogram bodies are expanded inline

VERIFY DECISIONS MADE WHEN CHOOSING A LAYOUT REPRESENTATION FOR
STORAGE
(AIE)miaO6Ola predefined type INTEGER given a layout of one word
(AIE)midO6Olb predefined type SMALLINTEGER given a layout of

1/2 word
(AIE)midO6Ulc verify user defined integer types given smallest

layout
(AIE)midO602a predefined type FLOAT is represented as single word
(AIE)midO6O2b predefined type LONG_FLOAT is represented as single

word ----"

(AIE)midO6O2c user defined floating point types are given smallest
layout

(AIE)midU6U2d error issued when accuracy requested is too precise
for implementation

(AIE)midO6O3a fixed point types represented as single word
(AIE)midO603b or issued when accuracy requested is too precise for

implementation
(AIE)midO6O4a object represented with 3 bits is given 3 bits in •

packed record
(AIE)midO6O4b object represented with 3 bits is given a byte in an

unpacked array
(AIE)midO6O4c object represented with 3 bits is given 1/2 word as

a local ojbect to a subprogram
(AIE)midO6O5a statically sized components are stored in the 0

beginning of record and dynamically sized components
at end with pointer from beginning

(AIE)midO6O6a representations are as small as possible in packed
array

(AIE)midO6O6b representations are expanded to byte to ease
addressing in unpacked array

(A[E)midO6O7a storage for variant parts of records is overlaid
(AIE)midO6O7b storage for disjoint blocks within subpgm bodies is

overl ayed
(AIE)midQ608a verify allocation on secondary stack for dynamic

sized arrays not i. records
(AIE)midO6O9a checks length clause: for numeric type (rep specs) -AP
(AIE)midO6Ob checks length clauses for access type (rep specs)
(AIE)miaO6O9c checks length cluases for task type (rep specs)
(AIE)midO61Oa checks record rep clause that specifies the packing

J-28

. .. .

in 2 words .
VERIFY STATICALLY SIZED OBJECTS SIZED <= 64 BITS ARE USED AS FORMAL

PARAMS - AC[UALS PASSED BY VALUE
(AIE)miaO7Ola checks parameters of procedures
(AIE)midO7Ulb checks parameters and return values of functions

VERIFY STATICALLY SIZED OBJECTS SIZED >= 64 BITS ARE USED AS FORMAL
PARAMS - ACTUALS PASSED BY VALUE
(AIE)midU7O2a checks parameters of procedures
(AIE)midO7O2b checks parameters and return values of functions

VERIFY CORRECT PARAMETER PASSING METHODS ARE SELECTED
(AIE)midO7O3a checks parameters of procedures
(AIE)midO703b checks parameters and return values of functions

VERIFY DYNAMICALLY SIZED OBJECTS USED AS FORMAL PARAMS PASSED BY
REFERENCE
(AIE)midO7O4a checks parameters of procedures
(AIE)midO7U4b checks parameters and return values of functions

J-2

i

•. 0

J- 291

i-- ,.-.

. * . °

" °° •............. . .• .

AIE BACK ENO TESTS 0

CHECK COMPILER OPTIONS
benOlOla verify memory size with OPTIMIZE => SPACE
benOlO2a verify cpu time with OPTIMIZE => TIME
benO20Ia check FLOW with OPTIMIZE => NONE
benO2U2a check strength reduction and code motion when OPTIMIZE => 0

SPACE

CHECK FLOW AND WALKS OF BILL TREE
benO2O3a with LOOP and no subprogram calls
beno2o3b with GOTO and no loops or subprogram calls
beno203c strength reduction unit processing
benO203d with subprogram call and INLINE pragma
benUO?3e with subprogram call, subprogram defined in program
benO2O3f with subprogram call, subprogram declared in package
oenO2O3g with subprogram call, subprogram in library unit
benO2O3h with subprogram call, recursive subprogram in program
ben02O3i witn subprogram call, recursive subprogram in package
benO2U3j witn subprogram call, recursive subprogram in library
benO203K with GOTO, no loops or subprograms, detection of common

subexpressions
ben02O4a with units eligible for strength reduction when

OPTIMIZE => TIME •
benU2O5a with straightline program

CHECK CONSTANT PRAPAGATION WITH EXPRESSION SIMPLIFICATION
benO301a when constant is a named number
DenU3Olb when constant is a true constant

CHECK FOLDING IMPLEMENTATION BY FLOW
benO3O2a where expression has binary operation and integer operands
benO3U2b where expression has unary operation and integer operands
ben03O2c where expression has deeply nested unary operations
benU3U2d where boolean expression has unary or binary operations

and boolean operands
benO3U2e where constants are adjacent and where they are dispersed

CHECK TREATMENT OF EXPRESSIONS AS COMMON SUBEXPRESSIONS
benO303a with binary expressions and no change of any variable
benO3O3b with binary expressions and a change of some variable
ben03O3c with components of an array 0

benO3O3d with binary expressions, variable changed in IF and CASE
benO3O3e with subexpresions permuted or muddled by parentheses
benO3O3f with array offset
benO303g with array offset and value assigned object
benO3U3n with arguments to subtype conversion functions
ben03O3i with arguements to type conversion functions 0
benO303j with labelled statement to GOTO
benO3O3k with labelled statement with no GOTO
ben03031 with nested levels of declaration of subexpressions
benO33m with record components

CHECK EXPRESSION SIMPLIFICATION
benU304a with integer , no side effect as a suboperand
benO304b with integer, with side effect a- an operand

J-30

DenO304c with floating point, with side effect as an suboperand S
Ut,,3u.u WILfI fioating point, no side ertect as a Sub operand
benO304e with boolean, no side effect as a sub operand
benOS04f with boolean, with side effect as a sub-operand
benO3049 with cancelling of subexpressions

CHECK STRENGTH REDUCTION 5
benO4Ola with FOR loop
benU4Ulb with FOR loop, elements not in usual arrangement
benU402a with invariant code movement

CHECK RANGE INFORMATION AND UNNECESSARY CONSTRAINT CHECKS
'erUOUIa at END IF statement •

benUbblD at END CASE statement
benObUic with BACK END check range information
oenUbOl1 with BACK END check access checks

CHECK REMOVAL OF UNREACHABLE CODE
benUbO2a by FINAL with 'if-else-then' with constant propagation 5
DelObO2b by FINAL with 'if-else-then' with range information
benObO2c by FLOW with LOOPS, condition always false or range null
benObO2d by FINAL with CASE, with constant propagation
benUbO2e with GOTO
benUbO2f between RAISE, with unhandled exception
benObU2g between RAISE, with handled exception •
neriObO2h by FLOW in CASE, where alternative chosen by null range
n enUS02i by FLOW in CASE, don't need OTHERS choice
benObO3a nested GOTOs changed to one GOTO

CHECK "CROSS-JUMPING" WITH COMPILER OPTION, OPTIMIZE => SPACE
henO5O4a at end of THEN, ELSE
rbenU5O4b at end of THEN, ELSIF, ELSE
benU!)04c at end of CASE
benU5O4d at end of CASE where several sets of duplicate code- DenUbO4e at end of THEN, ELSE where code semantically the same

CHECK PRAGMA INLINE SUBPROGRAM 5
-enObOba instead of compilation unit
benObOSb in declaration of space optimized subprograms

' CHECK BACK END USE OF LOCAL SPILL
S benO6Ula with integer expression that requires 16-plus registers

* DenUbUlb with floating . expression that requires 4-plus registers 5
OenUbOic with complex expression that requires 16-plus registers
DenUbU2a with simple expression

LHECK COMPILER BACK END LIMITATIONS
I)enU7Ula verify speed of compilation
oenU7U2a verify size of compiler
benOlU3a verify maximum size of BILL node

J- 31
p

' 'L " . - ' ' ' ' . ' .".'° ""-"-.'"'" ," '"'" ." -".' ."- . ,"... - . - . '. ." ."". ." .. " " "- - -. , "

• -- '-- -?_t ~ t~ .'. :'.' ' -- ,',"". "''. ".." ." ... "...-......-.........-.......".-..............-"" ,"'-. " "'

AD-RI53 669 EVALUATION AND VRLXDATION (ElY) TERM PUBLIC REPORT 5/6
VOLUME 1(U) AIR FORCE WRIGHT AERONAUTICAL LAS
WRIGHT-PATTERSON AFS ON V L CASTOR 30 NOV 84

UNCLASSIFIED F &L-TR-85-1 16 16-VOL-iF/G 14/2 NL

mommmhhhhhml
momhhhhhmmhhh
Emhhhhmmmmh
mohohEEEmhhhhI

t.

L51_1 0 L28 *25

1162

116&6 L4. IIQ

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANOARDS1913A

S

0

APPENDIX K 0

E&V WORKSHOP POSITION PAPERS

0

S

0

.71
S

S

0

K-i

S

..-.... ~..

Table of Contents

Simulation: An Important Issue for APSE Evaluation and Validation . K-3

Validation and Standards in Ada Environments K-9..........

Environment Evaluation and Validation: The User's Perspective . . K-15

Evolutionary Development of an APSE E&V Capability K-22

Ada Programming Support Environment (APSE) Evaluation Metrics . K-28

APSE Tool Taxonomy. K-35

Application Specific - APSE Evaluation K-42

Balancing Standardization and Innovation in the Evaluation and
Validation of Ada Programming Support Environments K-47

Towards APSE Standardization K-51 0

Standards of Evaluation and Validation for Ada Programming Support
Environment Tools K-54 '

The Implications of Software Targeted for Embedded Computer Systems
on the Evaluation and Validation of Ada Programming Support S
Environments K-60

Compatibility of Run-Time Support for Ada and the CAIS K-68 .

Evaluation and Validation Issues for Embedded Computer Systems

Development APSES K-72 S

Increasing APSE Capabilities Impact on E&V K-80

Ada Programming Support Environment Evaluation and Validation
(APSE E&V) User Interfaces and Methodology Compatibility: Two
Forgotten Issues K-86 S

Comprehensive Software Development Environments K-98

Evaluating APSE Effectiveness in Developing Software K-105

K-2

° S

............. *.

SIMULATION: AN IMPORTANT ISSUE FOR
APSE EVALUATION AND VALIDATION

BARD S. CRAWFORD
THE ANALYTIC SCIENCES CORPORATION

K-3

THE ANALYTIC SCIENCES CORPORATION

SIMULATION: AN IMPORTANT ISSUE

FOR APSE EVALUATION AND VALIDATION

by Bard S. Crawford

1 I oNTRODUCTI ON

The thesis of this position paper is that simulation

software deserves strong consideration in the design of APSEs

and, therefore, in the evaluation and validation of APSEs

Simulation software can be viewed in two ways, as follows: -

0 It can be viewed as part of an APSE,
useful in supporting the development

and testing of embedded system software.

0 It can be viewed as a category of applica-
tion software, which requires general-
purpose simulation support packages that
are part of an APSE.

Both of these views are valid and both lend support to

the thesis expressed above.

2. THE IMPORTANCE OF SIMULATION

Throughout the entire life cycle of the development and

* use of embedded software systems, simulation has traditionally

played a number of key roles. Furthermore, these roles are likely

to increase in importance in the future, especially in a "software

K-4

:~~~~~~~~~~~~~~~~~~~~~~.::..:-.-.v.-. --:-:.......:- .: .:. -....-.... . _....... ... ,.: , - -..-... v.. _ €--.,


~~~~~~~~~~~~~~~~. . ... ........ . ....... ... . . . .,. --.-. :-..-..... . ..-. ---. ,:i-

THE ANALYTIC SCIENCES CORPORATION

first" scenario or in a weapon system development program in

which software "defines the system." The traditional uses of

simulation software include:

0 Support of early analysis and prototyping
of critical elements of an advanced system
concept.

0 Provision of test driver programs in
support of both unit tests and integrated
system tests of embedded systems under
development.

* Support of software "maintenance" activi-
ties including assessment of proposed
software changes and acceptance testing
of newly-inserted changes. S

0 Provision of "hardware in the loop" simu-
lators and training simulators.

Across the life cycle of an embedded software system it 0

is not uncommon for the amount of simulation software code to

exceed the size of the actual embedded system code. Thus, a

good simulation support environment can pay significant produc-

tivity dividends in two regimes: during the development of the
simulation code itself and during the analysis, testing and main-

tenance of the embedded code -- by virtue of the greater effective-

ness of the simulation packages employed.

3. SIMULATION TOOLS AS APSE COMPONENTS

Figures K-I and K-2 illustrate two views of simulation

software in relation to APSEs. Figure K-I labeled "Prototyping

Scenario" represents a "pure simulation" or scientific progranming

environment used to perform exploratory investigations of appli-
cation domains and/or prototype algorithms. The APSE segment

labeled "Support Packages" represents, for example, general

purpose simulation support tools (Ada packages) such as discrete-

event process schedulers, continuous simulation integration

K- 5Z..•,: .



THE ANALYTIC SCIENCES CORPORATION

A-5728

0l0

IDS

KAPS0

MAPSE

Figure K-i. Prototyping Scenario

IDS

SYSTEM

TARGET COMPUTER

MAPSE

HOST COMPUTER S

Figure K-2. Testing and Maintenance Scenario

K-6



- - -. *. - .'---°- -.

THE ANALYTIC SCIENCES CORPORATION

routines or combined discrete/continuous support tools. Two .

application software segments are shown: "Real-World Models"

and "Prototypes." The latter are early experimental versions - -

of modules that will eventually evolve into embedded software

in a different scenario. 0

The former, "Real-World Models," could be ,iewed in

one of two ways, as mentioned in Section 1. In this figure it

is pictured as an example of application software -- outside 0

the APSE. It might also be pictured as a part of the APSE --

that is, as a set of tools used to support a specific applica-

tion area, but serving a spectrum of projects within that area.

The choice of viewpoint is somewhat arbitrary. The main point S

to be made here is that these Real-World Models are an extremely

important category of software to be considered in the evaluation -.

of APSEs-- whether they are considered part of the APSE or as the

"first level" of application software supported by the APSE. 

Figure K-2, labeled "Testing and Maintenance Scenario"

represents the "mainline" developmental and operational environ-

ments. In this case a host computer supports the APSE and

simulation software, which communicates with the developmental

Embedded Software (ESW) running on a target computer (or emulator). -

Again, the Real-World Models are an extremely important element,

with significant implications for APSE design, evaluation and

validation.

4. EVALUATION AND VALIDATION ISSUES RELATED TO SIMULATION

Listed below are some suggested activities designed to

bring out issues related to simulation support tools.

0 Identification of existing simulation
support tools in existing environments
or under study in research programs.

K-7

• . - . , . - , . , . ° • ." • . . . - . - .. " '



THE ANALYTIC SCIENCES CORPORATION

* Identification of missing-but-required •
simulation-support tools.

0 Categorization of simulation-support
tools and tool features in a manner
useful to E&V.

0 Identification of tool interface issues
(e.g. CAIS compatibility) relevant or
unique to simulation-support tools.

* Development of evaluation criteria
(formal and informal) appropriate to
simulation-support tools.

* Definition of baseline or benchmark
simulation scenarios useful in the
evaluation of APSEs.

& Identification of simulation-support
tool usefulness as a function of life-
cycle phases and methodologies.

Given the crucial role of simulation software and its:,

intimate relation to the APSE outlined earlier, it follows that

the issues/activities called out above are of major importance

to the APSE E&V Effort.

K-

. . . . . .. . . . . . . . . . . . . . . . . . ".



VALIDATION AND STANDARDS
IN ADA ENV IRONMENTS

PAUL DOBBS

GENERAL DYNAMICS

-

* S q

p S ,

* 5 ;

K-9

"" - "



4.1 Validation And Standards In Ada Envirorments

S

Paul Dobts

General Dynamics

Data Systems Division 0
Gentral Center

Fort Worth, Teas

This paper exmines those factors within an Ada Programing Stort S

Envirornment (APSE) which can be validated against a standard, attempts to

remmend new standards for developnent, and examines methods for validating

against those standards. It is based on earlier research performed for the

Ada Evaluation and Validation (E&V) Committee under the auspices of the S

Integrated Support Software System (ISSS) contract. Documents which were

produced during that research and which will be referred to in this paper
include "Evaluation and Validation of a Cnmpiler", "Evaluation Questions",

"E & V Tool Features Evaluation", and an untitled listing of tools and S

interfaces.

Oompiler Compliance with the Ada Standard

It is important that all Ada compilers be validated with respect to the Ada

language standard. his is already being done with the use of the Ada

Compiler Validation Capability. However, there are still sane unresolved
issues dealing with validation. One of these deals with the standard I/O 
packages. Many embedded computer systems do not do ary form of text I/O,

nor do they reed a file system. An example of such a system is a flight
control system. Its inputs are switch positions, control pressures,

acceleration reading, indications of whether or not the wheels in the S

landing gear are spinning, and so on. Its outputs are signals to the servos

controlling the positions of the flight control surfaces. It would seem
reasonable that a copany which was having a piler written for this . -

application should not have to pay for having packages written for text, - _ ]

random, and sequential I/O, when the Daly use for these packages is to get

K- 10

i'-"- .. p . .. .... .'....-.".,.-.'."........ ..--.......... .. .. ...... •.... .. .i-."'.!



the compiler through validation. It is even a possibility that the hardware

of the target computer might not support these types of I/O. A study reeds

to be oraLicted to determine whether it would be possible to relax the
language requirements for the standard packages. One possible problen is

that removing these packages leaves no simple way to obtain results fran

those tests in the validation suite which actually execute. It might be

possible to require that the organization requesting the validation of a

compiler which cbes not provide the standard I/O packages provide the means

by which the results of executing tests can be determined.

Tool Cbmpliance with CAIS

The Crnmon APSE Interface Set (CAIS) is a standard set of KAPSE interfaces

which is under development by the KAPSE Interface Tean (KIT). mpliance

with this standard will become mandatory when it is fully developed. The

standara is in the form of Ada package specifications and descriptions of

semantic actions. A suite of test prograns could be developed which would
exercse the nterfaces of a APSE and check it for oumpliance. In this way,

each APSE could be validated. A technical report on "Validation in Ada

Programning Support Environments" has been written by a team fran Virginia

Tech and MITRE, so @IS standardization will not be further discussed in

this paper.

(mpiler and Tool Canpliance with Diana

The Distributed Intermediate Attributed Notation for Ada Oiana) is a

proposed intermediate language for Ada ormpilers. It is not yet a standard,

but it has been suggested that it be eventually made into a standard. The

advantage of having a standard intermediate language is that, if it were

rigidly enough defined, ampiler front ends could output Diana which could

be stored for use by other tools, as well as by the compiler back end.

Tools which might be able to use Diana include PIL processors, code

formatters (pretty printers), optimizers, statistical profilers, and of

course the compiler itself. A standardized intermediate language makes it

possible to construct these tools without reference to any specific

environment, so that they can be transported fran environment to environment

K-I1 •

.. .).j-?.- i..>. -. j. i'.q.-.-'.-..... :.- .-.-- * * ...............................................-. '......"--...".........'.",-.........,...... Q.



easily. In addition, it would be possible for third parties to develop code

optimizers and new back ends (code generators) in a reasonably portable

fashion if a common intermediate language existed.

The best form for such a common intermediate language standard would be Ada

package specifications and descriptions of standard semantics. The package

specifications would have to cover both the type definitions (implementation

details could be private) and accessing procedures (whose implementation

dependent details could be hidden in package bodies). Each envirorment

could provide a set of implementations (package bodies and the private parts

of the specifications) for the Diana package specifications, which would

solve the problem of making the intermediate language efficient on different

machines. A tool which was being imported into a new envirornent would have

to be recompiled using the implementations on the new envirorment, but it

would need to be reoompiled anyway to conform to the local implementation of

the CAIS.

A pair of test program suites would need to be developed to test compliance

with the intermediate language standard. one of the suites would test

compliance by programs that produce Diana. It could consist of Ad programs

which would be fed to Diana generators to produce Diana which could be

compared with the expected results. The second suite would provide Diana

which would be fed to those programs which use Diana as input. The problem

with the second suite of tests would be that there are many types of Diana-

using tools, and even for tools of the same type, their output is usually

not subject to standards. That means that checking for compliance would be

a costly manual process. Because of the time and effort involved in

checking the output, and the fact that this process could not be effectively

autonated, it is not reasonable to validate the compilance of Diana-using

tools to the standard.

Text Files

As strange as it may sound, it may be necessary to issue a standard on text

files. Although "everyone" knows what a text file is, actual examination of

the situation reveals that not all text files are created equal. Sane text

K-12 0
. ... . . . . . . . . . . . . . . . .....-.... .

.' . •.



editors store compressed text files in which blanks are replaced by blank
counts. An example of such an editor is the Wilbur system on the IBM 370

(Not an IBM product), which replaces every occurence of one or more blanks 0
with a byte in which the first four bits represent the number of blanks, and K -

the next four bits represent the number of nonblank characters before the

next blank. These files must be expanded by Wilbur before being input to a

compiler. This is an extreme example, but even among "pure" text files, •
there are differences. Most of these differences involve the use of control

characters. Many systems use tab characters to save space in text files.

Unfortunately, they do not all agree on just what the tab represents. Mary

terminals are set up with predefired tabs every eight spaces, and will S

accept tabs in text to be displayed, but same react to the tab as though it

were the end of the line. End-of-lines are another problem. On sane

systems, end-of-line is a carriage return, on sane it is a line feed, and on
others it is a combination of both. 0

These are small details, but such problems as these can be extremely

frustrating to the user of a system where they have not been taken into

account. Therefore, it would be good if such details were thought out in

advance and set into writing as a standard. Validating such a standard

should be fairly simple, since it should only involve checking text files

output by the system tools. If the standard is properly constructed, it

should be possible to fully automate this process.

Compiler Output

There is a minor reed for standardization of compiler outputs. These may

consist of object files or assembly language files. The problem is that
multiple assembly languages exist for the same processors, and that the same

is true for object files. It does little benefit to have a MIL-SID-1750A

-- Instruction Set Architecture, for example, and have tools sets MW and
-" MIC) which have different object file formats. A standard should be

chosen. However, there is no real reed for validation of these standards.

K-"13
-< . -S

...................................................... .....- ..-. .



cbncl usions

Fran the above discussion, there appears to be sane need for standards in
* the areas of intermediate language (Diara), text f iles, and] cxxpiler output

files. This is an area in which the E&V xmmittee should c~noern itself.
Also, the validation standard for the Ada language itself wray reed to be

reexamfined in terms of the real needs of the enbedded computer community.
However, this is more an AIK) matter than an E&V aiTmittee matter, as things-

* currently stand.

K-14



ENVIRONMENT EVALUATION AND VALIDATION:
THE USER'S PERSPECTIVE

ROBERT E. FRITZ
COMPUTER SCIENCES CORPORATION

K .1

K-isi-. .

S °



ENVIRONMENT EVALUATION AND VALIDATION: THE USER'S PERSPECTIVE
S

Robert E. Fritz
Computer Sciences Corporation
Applied Technology Division

4045 Hancock Street
San Diego, CA 92110

in±roJ.tn For software developers the criteria for evaluating tools and
environments are simple: the environment is there and helps them do what
needs to be done. Anything less that this is Inadequate, for the purpose of
the environment Is to aid the software engineer produce programs not prove
the val idity of an Idea. The Ada Programming Support Environments are in
particularly sensitve position because of the importance of the systems
they will be used to produce, and because of the high visibility of the Ada
program. Strong standards meaningful to software engineers to ensure that
APSEs will be available and usable must be created. The qualities of a
usable environment are easily described, but quantifying these criteria is
a major issue. The technology applied to achieve the usability criteria may
be greatly different.

Avllabllty. No tool or environment Is useful if it does not exist or is
not available on the system used for project devlopment. Many environment
tools are meaningless If certain core tools are not avaIlable. For the
APSE, the essential tool is the Ada compiler. If the compiler Is not
adequate for the task no amount of tools or sophistication will make the
project succeed if Implementation cannot be done. After the compiler the
second most Important tool Is the file management or support for separate
compilation. Without these tools in place there can be no progress.

Other tools such as configuration managers, editors, design aids and
others provide convenience but are useless without the compiler.
Environment construction should be done Incrementally after an overall
design has been done to a moderate level of detaIl for the range of life-
cycle support tools desired. This Implies a prioritization of tools with a
core tool or tool described for the various life cycle stages, as well as 0
an assignment of priorities to various life-cycle stages and activities.
The Software Engineering Automation for Tactical Embedded Computer Systems
(SEATECS) project of the U.S. Navy has attempted such a prioritization [1i
which could serve as a point of departure for a generalized prloritization "-" --
for APSE tools. The priority levels used were near-term requirements, mio-
term requirements, and long term requirements according to the criticality -

for support of Navy systems and technological feasibility. Criticality had
three levels of classification:

a. Immediate. Essential support of basic mission.

b. Productive. Capabilities would significantly Improve productivity. These 5
capabilities would are Initially supplemental but become essential as
workload grows.

K-16
S

.... . . . . . . .-.. **> .-.-....



* .. '. .°. ...

c. Desirable. These capabilities enhance the ability to perform the mission
but the absence of which will not be detrimental to performance of mission.

Technological feasibility describes the ease with which a tool may be 0
built or incorporated Into an environment. The feasibility classifications
used by SEATECS are:

a. Available. Capability available off-the-shelf and requires little
adjustment.

b. Convertible. Capability technologically available, but not in the exact
form required. Some modification Is necessary.

c. Experimental. Capability has been demonstrated experimentally or in
Slimited form. Risk Is involved to complete theory or implementation of
capability for use in the environment. S

d. Theoretical. Theory or preliminary groundwork exists but no automation.

e. Unknown. No theory, research, or automation is known for the capability.

For assigning priorities to desired environment capabilities, other O
criteria may also be developed which better reflect the needs of the users

* of the environment. Quantification of the criteria is also desirable where
possible to provide better boundaries for environment production.

Once priorities have been assigned, production schedules for
environments should be assigned to build the tools according to priority . S
where possible. However some tools will have to be built of priority order 1

because of technical requirements of other tools. The production of a lower
priority antecedent tool should not disrupt production of unrelated higher
priority tools. Schedule engineering for APSEs must be done to insure that
the current trend of APSE development is not maintained: production of
large monolithic environments at the expense of core tools, specifically 0
the Ada compiler and related tools.

Jsabiity. The criteria for user satisfaction with a particular tool or a
general environment may be enumerated conceptually but It is more difficult
to provide quantitative measures. The usability of a tool is measured
subjectively by different users with different levels of skill, experience,
training, intent, and with diferent personalities. The criteria for user
approval [2] include:

o FunctionaL± The range of tasks that the user can do with the
system.

o Larn1ne How long It takes to learn how to do a given set
of tasks.

o S.p Zeed How long It takes the user to do a given set of
tasks. ..-. .

o Errors How many errors the user makes and how severe
they are.

K-17
Se



o Quality How good the output of a given task is.

o Robustnssi How wel I the user and tool adapt to new and
unexpected tasks. 0

o A,£etabJ..LI± How wel I the user subjectively rates the system
for doing a given set of tasks.

Other criteria may be added to this list:

o Intearati1n How well Individual tools work together.

o Human Intface How physically and psychologically ergonomic the
tools or system are.

S

Functionality. A tool should be limited to solving as small a piece of
the problem as is reasonable. The function that the tool automates should
be based on the user's structuring of the problem, and not on the software
system architecture. .

The environment must be able to aid the user in solving the range of
problems for which the environment was designed. Adding functions which are
"nIce" because they allow the environment to be extended to other areas
should not be done if the addition detracts from the essential purpose of
the environment... 0

Learning. Tools should be easy to learn to use and protect the user
from harming himself during this period. On-line tutorials which lead the .

user through basic command sequences and on-line help facilities help the --

user get started quickly and give him confidence In the productivity of the --

tool. The most heavily used features of the tool should be the easiest to
use. The tool should be constructed to reflect the user's way of doing
things. The tool is meant to aid the user, the user is not meant to aid the
tool.

The greatest aids to learning environments are consistency and

functional Independence of tools. Commands with similar functions, such as
editing, should be Identical or be similar throughout the environment. 0
Tools should not overlap but have a clearcut purpose and well-known
Interfaces to other tools. Help facilities which describe the use of tools
so the user may choose the best one Increase the user's ability to use the
environment well.

Both Individual tools and environments should support users with .

different levels of experience. Novice users need prompting and menu driven
systems to provide a lot of support. Expert users must have the capability
to circumvent time-consuming menus by using some sort of quick mode for the .- -

tool or environment commands.

Speed. A user views the speed of a tool In two ways: how long It takes
to react to a specIfIc Input and how long It takes to perform a general .

function. Generally. users expect very fast response to opening or closing

K-18 0

S........................................... ...................................................



commands and for data editing. Users wilI accept longer times for processes
such as compilation and code generation, or data base restructuring.

Errors. A tool should prevent the user from entering erroneous data or
Illegal commands. Commands which result In the deletion or radical change
of data f IlIes shoulId be quest Ioned. The user of the tool shoulId be made
aware of the consequences of the action and forced to conf irm the request.
Command names should be consistent with those of other tools, and be
Intuitive so far as possible to allow easy learning.

When errors do occur, a simple explanation of the error should be
produced, not a cryptic error code which must be referenced In a manual.
Error messages should be on-line and have options for tutorial explanations
of tool commands. Means for error recovery should be provided, Including
creation of backup filies accessible to the tool user.

System command language errors should be handled similarly to tool
errors. Help facilities should be available to list commands, with brief
explanations of purpose and syntax available at a lower level. and a full
tool tutorial at an even lower level. User roles can be used to control
access of users to tools and data to prevent undesirable access or
modification.

QualI Ity. The toolI must accomplI Ish the des Ired f unct Ion and produce
*output which is useful to the user. The output may be in a form to be
* passed to another tool, or It may be In a human-readable form.

Robustness. Tools should be adaptable to many analogous activities.
For example, the editor used for word processing shouyld have a mode for
program editing. A schedul ing tool should work as wellI for a fixed-price
C3-1 project as it does for a cost-plus avionics project, though with

*different inputs. Tools which operate with templates should be suppI Ied
with several likely candidate templates. Template creation should be
supported with tools and tutorial interaction.

The APSE must be able to support development and maintenance of
embedded computer systems. This was the design objective for Ada. The APSE
should also be capable of supporting other uses, Including training and

* education, scientific processing, business data processing, and
communication and networking. These are secondary needs and should not
detract from the primary purpose.

Acceptability. The user must IIke the tool or system. The tool and
* system must gain his confidence by providing the function and efficiency he

seeks to help him in his work. The tool and system must give the user help
when needed, protect him from himself, and help the user apply the tools to
new situations. The user must be comfortable with the way the system works,

* and the system must be adaptable to the user's way of doing business. The
user must feel that the system Is helping him do his work, rather than theI

* user is helping the system do its work. -S
Integration. The tools within the environment must work well together,

* In both expected and unexpected combinations of tools. Data formats must be
* compatible. Functions contained In tools should not overlap. For example,
* It should be necessary to sort an already sorted f Ile to extract a data

K-19

* * . -- --. i

. . . . . . . . ... .* ... * *.. ... . . . . . . . . . . . . . . . .. " . |
-aware ~ of the consequences of the action .. -~*... andfored o cnfr* he equst *.-.---



i tem.

Human Interface. The means by which the user interacts with a tool or
the system is the single most Important aspect of user evaluation. Both
hardware and software contribute to the human interface, and both should be
carefully designed. The interface must be adaptable to a number of
different styles, and allow for varied amounts of experience. Help should
be available in varying levels of detail from brief reminder to complete
tutorial. The tool commands and system commands should be consistent and
Identical where appropriate.

Hardware interfaces may Include more than keyboards and CRTs. For some
applications alternate I/0 devices including mice, touch-screen, trackball,
or foot-pedal for input, and high-resolutlon graphics, color, sound, plots
and graphs, video for output.

Architecture. APSE architectures must support a variety of
configuration. At the time fo Stoneman, the implicit understanding of the
software development system was a minicomputer with a number of terminals.
Since that time local area networks and microcomputer work stations have
been widely used. Distribution of capabilities between intelligent
workstations and larger computers in a network or distributed system is an •
Important consideration to the portability of the environment.

Co£nrusiu.Ln The only valid evaluation of an APSE is the user's
perception of It. Unfortunately, user evaluation Is too late. Those
criteria which affect the user's perception of the environment's value
should be the primary basis for evaluation of APSEs. Other aspects such as
adherence to CAIS guidelines should have only secondary importance.

K-20

....... . - .

. . . . . . .



[1] SEATECS Top Level Requirements, NOSC, August 1982

[2] "An Appi led Psychology of the User", Thomas P. Moran, ACM Computing
Surveys, Vol. 13, No. 1, March 1981, pp. 1-11

K-21

-S

S

.,

K- 21 _

.2 .l--]i /."-'l ''~i_-"-i'r'- i "-°'"2'' ._. - ii ?' l'" "''i. .. i-l ]i :li".:&. ,, _ _ _ __.. ""..,' .l',..



EVOLUTIONARY DEVELOPMENT OF AN S
APSE E&V CAPABILITY

KATHLEEN GILROY
HARRIS CORPORATrION

K-22



February 16, 1984

2.0 POSITION PAPER

"Evolutionary Development of an APSE E&V Capability"

Introduction
---

The goals of transportability and interoperability of Ada
Programming Support Environment (APSE) toolsets and databases are
promoted through the use of the Common APSE Interface Set (CAIS)
currently under development by the KAPSE Interface Team (KIT),
and their counterpart from Industry and Academia (KITIA). The Ada ,
Joint Program Office (AJPO) has expressed the opinion that use of
the CAIS will eventually be required, with Version 2.0 of the
CAIS to be a MIL-STD maintained by the Department of Defense
(DoD). A CAIS Validation Capability is the logical starting point
in the development of the more general APSE Evaluation and
Validation (E&V) Capability which is necessary to accomplish the
overall goals of the Ada program.

Evaluation of an APSE implies some measurement of the performance
and/or quality of an APSE. This includes the ability to assess
qualities such as usability, reliability, and maintainability.
The current state-of-the-art is not sufficiently mature to
support the setting of standards in this area at the current
time. Validation is the determination of conformance of the
2 mplemented system to the stated requirements of the system.

" Conformance to the CAIS will not, however, ensure that programs
are either transportable or interoperable. Implementations must
possess other qualities to ensure that these types of
requirements are met. Validation is the area with which we have a
greater understanding and experience, and from which we can build
on our previous knowledge incrementally, in much the same manner
as the ACVC has and will evolve.

The recommended approach is the incremental development of a
layered set of validation suites, which mirrors the conceptual-•
model of the APSF itself. A CAIS Validation Capability would
first be developed, with CAIS in this sense meaning the basic
virtual operating system facilities required by all APSE tools.
Once this capability has been established, a more general tool
validation capability would be developed which provides the means

for validating additional CAIS tools which are to be added to the
system. This will support both the evolution of the CAIS into a
more extensive standard tool set, as well as provide a means for
standardizing the addition of non-CAIS tools to the APSE.

One of the requirements of the initial CAIS validation process is
the ability to monitor the performance of the system. The data - -

resulting from the validation process will provide the beginnings
of an evaluation capability. The information collected (from the
validation process, or through tht monitoring facility in

g C D , T , I nna lvz.d and dissemirnated. P viformar, i not '-9"..S r, t1 4 11 u i J t , n ,tw I~ v x r. an d more v w ,rik w i I need t c, be " "

SK-23

. . . . .. .-. .-.. ..- . . -.. .. . .. . - .. .. ..., ......-.......... -..- . ... .- .. .., . .. • .. . - • . -



February 16, 1984

done to develop criteria for other evaluation classes.

CAIS Validation Capability

The current version of the CAIS is essentially a KAPSE level
interface, in that it provides support for the run time system,
I/O facilities, and file management. Validation of the current
CAIS facilities will be quite different from validation of the
types of tools which will rest on top of these basic support
facilities. It is the performance of this basic interface set
which is the most important. All other tools which are added to
the system must interface with this set.

Determination of conformance of a CAIS implementation requires
that a set of interface requirements be established from which
validation may be performed. Currently, the stated conformance
requirements established by the KIT/KITIA in Version 1.1 of the
CAIS are a package-by-package syntactic and semantic conformance,
and support for minimum pragmatic limits. It is intended that
the CAIS could be introduced in an incremental manner, such that 0

subset CAIS implementations could exist during the transition
from existing APSEs (most notably the ALS and the ATE) to the
CAIS.

A precise description of the semantics of the interface is
critical to the development of a validation test. Selection of :
the test cases depends heavily on the proper specification of the
functionality of the unit, since test cases are derived from the
analysis of this specification. The first draft of the CAIS
contains an initial definition of the semantics of the
interfaces, but more work is required if a useful validation
capability is to be developed. -

This APSF evaluation and validation effort should attempt to
develop, in coordination with the KIT/KITIA, those specific
conformance requirements which must be validated. A Requirements
and Criteria (R&C) document is currently under development by the
KIT/KIT]A which addresses APSE requirements for achieving 0
transportability and interoperability and which would be
applicable to CAIS Version 2.0. A CAIS Implementor's Guide is
also planned which will provide assistence in the development of
CAIS implementations which are consistent with the rules for CAIS
conformance. Furthermore, those requirements should be of a
nature which simplify the validation process. It is proposed
that the development of the CAIS and the development of the
validation capability could and should proceed in parallel. This
could include the development of a Validator's Guide.

Parallel development of the CATS and the APSE E&V capability
would employ structured analysis techniques in evolving a 0
structured CAIS specification. Structured specifications are
expressed in a form that allows analysis of the properties of the
specification. Structured specifications allow for insptction of
i issin' information or poorly specifi ed informat i nt iisinF, bo th
manuaI and automated means. 

K-24

. . . . -. . . .
' L ...L '_ ':.. ' .f. '' --'''--'" ''L'''. -. . .. ".- ."- '. : . -" .-£ ..'." ." -, •.' '--' '-- -." - . '. ' _, _' '._. _' 0=



February 16, 1984

0

This approach would provide a formal methodology for expression
of the CAIS requirements in terms of the conceptual system model, 4

and provide evaluation methods for the requirements stated in
that conceptual model. Additionally, this approach provides
system quality goals, and support for evolution of the system
(changes in requirements occurring in future system upgrades).

The CAIS validation process must include the use of a performance
monitoring facility, which could possibly also serve as a general 0
purpose software development tool in addition to use for
validation purposes.

Tool Validation Capability

Development of an APSE should be accomplished using a system
development approach, requiring the specification of a complete
and unambiguous set of requirements. Stoneman defines the
overall top-level system requirements for an APSE. A more
specific set of requirements is needed for the development of a i
corresponding validation suite. Operational requirements
including user scenarios should be defined, followed by
specification of other interfaces such as the host/target
interface. Data objects and operations on the data objects
should be defined next. Finally, the algorithmic requirements of
the APSE should be elaborated. Concurrently with these activities
a system test plan and procedures would be defined which would
validate the APSE by outlining a progressive system test which
would begin with individual tool tests, proceed to functional
testing, and conclude with APSF system tests.

Validation should be done in a manner similar to current system
testing practices, where the test case generation is driven by
user scenarios. A unit test similar to the ACVC should be run
first to test the individual tool. Next, a functional test where
only the tools and protocols necessary for a particular user
scenario are included should be performed. Finally, a system
test should be used to validate APSE system requirements such as 0
transportability, interoperability, and reliability. New tools
can be added to the system through repetition of the system
development process. Another unit test is developed for the tool
being added. The functional tests are modified to accomodate the
new tool. The system test is similarly modified and repeated.

Initial APSE implementations will be composed of the CAIS plus a
small set of tools essential to the software development process,
i.e., the MAPSE level interface. It is assumed that the CAIS
will evolve to absorb many of these tools as they become

standardized, but prior to this, each new tool will be built on
top of the CAIS. The tool may interface with the CAIS only, or 0
may interface with other tools at this same level, or may
interface with a user of the APSE.

V:,1 i dat i.tI of these toc.Is includf.s issorance that tI e toc] 1.,t ver
f ;, low , Y I r \ vC I b, f l, (A IS anld ! I L e -

S.. K-25

.• - -. .

.. ... ...: . .-. .. : ..: ...



February 16, 1984

use of the facilities is consistent with their definition.
Validation of these and other APSE tools will additionally
require validation of the protocols used to transfer information 0
among the tools, some of which employ complex syntaxes and
semantics. Validation of a tool may be complicated by
interaction with a user. The protocol definitions could
potentially vary widely from tool to tool and from implementation
to implementation. It is in the interest of achieving
transportabiliy, interoperability, and a validation capability to 0
define a standard set of protocols which must be used for
intertool communication and tool to user communication.

The basic user interface to the APSE is through the command
language interpreter. The development of a standard command
language syntax and semantics is crucial to the goals of 0
interoperability and transportability.

In addition to a command language interface between tools, the
CAIS provides means for intertool communications through a
message facility, an interrupt signalling facility, process
synchronization facilities, and file management facilities.
Semantics for the use of facilities such as the interrupt
signalling facility are defined in more specific terms than the
possible uses of the contents of a data file. It is suggested
that a standard set of object-oriented packages encapsulating
typical data structures (e.g., lists, sets) be defined on which
all tool interfaces must be based. These packages would replace
the file management facility as-the interface manager. The
validation process is simplified by a more rigorous semantic
definition of protocols, which limits the number and type of
valid intertool interfaces.

Each tool should have its own validation suite, much like the
compiler validation suite. The ACVC is an example of validation 5
of a tool as an isolated entity. A complete validation of the
compiler would include validation of the editor to compiler
protocol (expected contents of an Ada source file), the compiler
to library manager (TBD standard library unit definition), and
the compiler interface to the CAIS facilities (e.g., to open the
source file), among others. 0

The addition of non-CAIS tools to the APSF would proceed in the
same manner. Some definition of "CAIS-conforming" tools should
be developed which indicates that the use of the standard CAIS
interfaces are not by-passed by the new tool, or the operation of
the CAIS modified by its inclusion.

Conclusion

The development of an APSE Evaluation and Validation Capability .
should be evolutionary.

Bu inninc. wit h t ,. in it ial vei sicn vf t Ie CAIS, a val idat ion .
I,,i t. f:hov1 b c d, v I ,t, e d f(, T d#, * rr inat ion of tonft,rn an c " -

f, ,T, r n h v t t u a c 1) t o t in ; ty cm f aic! I I t J C I ,

K-26 0

• -'.- .- .- . *. . . . . . . . . . . . . . . . . . .... . .. * - -" . *" *" ""." "'"-"- "•" '" "" " "" "" . .. ." * . * :: " :- . . : '



February 16, 1984 0

CAIS. The validation suite should be developed concurrently with
a complete specification of the CAIS interface requirements. The 6
CAIS Validation Capability requires performance monitoring, with
the by-product information used as the basis for development of
the evaluation capability.

Once this has been accomplished, the toolset could be
incrementally extended and validated using a system development S
approach. Validation must include not only the testing of the
tool in isolation, but also as part of a set of tools and the
intertool interfaces. Using the system approach, the higher level
requirements of interoperability and transportability can be
validated.

Not enough is currently known about evaluating APSEs for quality
requirements such as usability, and these capabilities will have
to be developed as more is learned.

K-27 .

.- .-..,". -". .. -... ". . .. ",-'.-". -' ' . .- ' -'.,- -' . . -" - - ." ,. '. -' ',-'i -".



ADA PROGRAMMING SUP PORT ENV IRONMENT
(APSE) EVALUJATION METRICS

KATHLEEN 1). GRACY
SOFTECH, INC.-

K-28



Ada Programming Support Environment (APSE) Evaluation Metrics

Kathleen D. Gracy
SofTech, Inc., Dayton, Ohio

A complete Ada Programming Support Environment (APSE) will be a very

complex software product and its evaluation and validation will be a very

challenging task. This position paper describes this evaluation and

validation from two aspects. The first aspect is the use of experience

obtained from the JOVIAL J73 Language Control Facility (LCF) activities

which performed functions analogous to the planned APSE Evaluation and

Validation (E&V) for the much simpler JOVIAL compiler systems. The

second aspect is the adaptation of software metrics methodology, devel-

oped for the general software environment, to the special needs of the

APSE E&V.

The goal of the Ada Programming Support Environment (APSE) Evalua-

tion and Validation (E&V) is to develop techniques and tools which will

provide the capability to assess APSEs and to determine conformance of

APSEs to the Common APSE Interface Set (CAIS). When these techniques and

tools are applied, they must provide software developers and managers

with the information needed to select and accept the APSE that most

nearly satisfies their requirements.

An important aspect of the APSE Evaluation and Validation is pre-

senting the results in a useful and understandable form. Experience with

the JOVIAL LCF activities indicates that this may be the most important

aspect. Regardless of how much money is spent, how sophisticated the

techniques and tools, how precise the measures, the APSE E&V effort will

be for naught if the results are not accepted by the user community.

Thus, the first step is to define the user community.

It will be an error if the APSE Evaluation and Validation results

are understood by only the small portion of the Ada community that is

thoroughly knowledgeable in both Ada and support software technology.

K-29

I'I -' " ." i -" -i- .- • .'. . '. i -... i. i. • ' i" .. -• .. L .I .. .. -. ". . I. L . . o • . . .'. h . .



It is important to share the APSE E&V results not just with such experts

and seasoned Ada users, but also with organizations just becoming

involved with Ada, application analysts, programmers, and managers. Most

important is making the results useful to managers for they are the ones - . -

who will make the final decision as to the APSE used by their organiza- -.-

tion.

Throughout the life of the Language Control Facility, the Test

Analysis Reports have been to some extent, misunderstood, misused and

misinterpreted. Although the goal of the LCF was only to measure con-

formance of the compiler to the language, it was obvious that the users 0

were interested also in efficiency, code expansion, and general perform-

ance. Although this was not the goal of the LCF, users often read into

LCF reports an evaluation of such characteristics. For the APSE E&V, the

criteria needed by users must be defined from the beginning, and evalua-

tors must make certain that their results are focused correctly on these

user needs. For example, one problem with the LCF validation report

was in providing percentages of tests passed. The people involved in

developing compilers understood that some constructs might require ten -

tests while others required only one, but that the number of tests had no

relationship to the importance of the feature tested. Therefore, a

compiler evaluation measure based simply on the percentage of validation

tests successfully passed was a misleading indicator of the usefulness or

completeness of the compiler. To overcome such a deficiency the tests

must be organized into a structure that is based on the functional

requirements of the component under test. In turn, these functional

requirements may be given weights so that demonstrating compliance with a

particular requirement is "worth more" than compliance with a requirement

of lesser importance. Many users believe that a relatively high score

for conformance is good enough. When significant areas of conformance

are not met, weighting should be used to make it clear to the community

the seriousness of the deficiency. These weighting factors must be

visible to both APSE developers and to users so the factors can be varied

to suit the needs of different users or user environments. Considering

K-30

• S- °

• ..... - ," . ,...'.-..'.. ".. .- '..., ..'. :'.., %",F , -.- . ." ......"..-........."......"-...-.....,-.'....,....-.'.......-.....-.'.-."..-..'..'.....'-."



- - -- -. -.--- - .- - . .. -• -o--

the APSE as a whole, different weighting factors may be required to

evaluate the suitability of a particular APSE to the software development

situation and to the software maintenance situation. 0

Another characteristic of the APSE Evaluation and Validation that - -

must prevail, based on JOVIAL LCF experience, is that the evaluation

criteria and methods must be known and accepted by the APSE developers as 0

well as the evaluators and the users. This aids in ensuring that the

evaluation criteria and test cases are valid since apparent errors in the

these criteria and cases will often be discovered by those whose products

are being erroneously evaluated. This also increases the objectivity of 0

the evaluation and the acceptance by the developer of even relatively

harsh evaluation results. Note that this does not mean that weighting

criteria should be a subject for review and criticism by the APSE devel-

oper since these weighting criteria are measures of the importance of 0

passing particular tests for particular user environments.

APSE Evaluation and Validation techniques will differ based on

whether or not a formal standard exists. Where testing determines 0

conformance to a formal standard, the evaluation can be objective and the

results quantitative. Unfortunately, there are many cases, particularly

when there is not a formal standard, where only subjective and qualita-

tive evaluation techniques are possible. This situation is analogous to

the past efforts in defining software quality attributes and their

associated metrics. The APSE Evaluation and Validation effort can

benefit greatly from this software quality metric approach.

The overall goal of both the software quality metric and APSE E&V

may be stated as the assessment of three major areas: the current

behavior/effectiveness of the software, the ease of modifying/enhancing

the software, and the ease of transporting and interfacing to the soft-

ware. Each of these breaks into several factors which must be evaluated

K-31

_0



separately. For instance, testability, understandability, and modifi-
ability are all factors that contribute to maintainability. In turn,
each of these factors may be broken down into subfactors. Once these
subfactors are defined, metrics to assess performance with respect to
these subfactors may be devised. The figure below illustrates this
structure and is based on the work of McCall and others in software
quality metrics.

USER EVALUATION EVALUATION FACTORS SUB FACTORS METRICS
CRITERIA

CORCNESSJ

USLIT 1 /O VOLUME -

TRAINING
APSE FIENC JDCMNTTO .

OPERAT ION

ii"S

LIBILITY..... ERROR TOLERANCE -

etc.
INTEROPERABILITY

ADAPTABILITY PORTABILITY

REUSBLT

FXBILITY

APSE _ESTBITY
REVISION) LJ

-INTAILITY

A-D-27

K- 32

sepaatey. or istacetestbiltyundestadablity an moifi



For evaluations based on the current operational definition, more of

the user community's input about evaluation factors will be required.

What characteristics are important to users? Although the APSE evalua- I

tion task will benefit from user inputs, most people are better at

critiquing what has already been done than in coming up with ideas on a

blank piece of paper. Therefore, the evaluation factors and associated

metrics should be drafted during an initial study and distributed to the ]

user community for comment. At this point we will find out additional

evaluatior , factors the users are interested in and which evaluation

factors may not be adequate for the user's needs. Some evaluation

factors may require two metrics, one for development and one for 9

maintenance. Some evaluation factors may have an inverse relationship

(e.g., the greatest degree of portability may only be achieved by the

sacrifice of efficiency and vice versa).

For many evaluation factors or subfactors it will not be possible to

define a specific test or tests to determine absolutely whether the APSE

has a particular characteristic. There may not be a formal standard

specifying required ASPE performance characteristics (i.e., standard

deficiency). Even if there is a standard there may not be a method of

objectively and quantitatively determining whether the APSE meets the

standard (i.e. metric deficiency). The figure on the following page

indicates the possible combinations and the resulting evaluation actions

for the standard deficiency and metric deficiency situations. The

categories are those defined in the APSE E&V Plan.

For example, the Ada compiler component of an APSE has a formal

specification (MIL-STD-1815A) indicating which Ada language features must

be processed. Using the Ada Compiler Validation Capability (ACVC) as a

basis, it is possible to define objective tests to measure whether the

K-3
_0

_______-____________________ .-......*.-.-,.-.-...



OBJECTIVE OBJECTIVE

MEASURDENT MEASUREMENT

TECHNIQUE TECHNIQUE -

EXISTS DOES NOT EXIST

PERFORMANCE STANDARD * VALIDATE * DETERMINE

EXISTS FOR COMPONENT COMPLIANCE INSTANCES OF

NON-COMPLIANCE

. EVALUATE SUBJECTIVE S

FACTORS

CATEGORY 0 CATEGORY C

AND E

PERFORMANCE STANDARD * MEASURE * EVALUATE SUBJECTIVE 0

DOES NOT EXIST PERFORMANCE FACTORS

FOR COMPONENT

CATEGORY B CATEGORY A

compiler component correctly recognizes all valid language constructs.

Thus, as the above figure indicates one must validate compliance with the

performance standard using the objective measurement technique (e.g.,

ACVC). A user may be interested in the speed of the compiler (e.g.,

statements compiled per CPU second); for this characteristic there is no

defined performance standard. However, it will be possible to define

benchmark cases to quantitatively assess compiler speed. Maintainability .- .

of the compiler is another characteristic of interest to the user;

neither a performance standard nor an objective measurement technique is

available for the maintainability characteristic. Thus, subjective

evaluation factors based on past software metric accomplishments are S

needed.

By blending experience from past language control and compiler

validation activities with the ongoing work in software metrics, an _

effective, valid, and usable APSE Evaluation and Validation technique can

be developed.

K-34

!S



APSE TOOL TAXONOMY

CHARLES HAMMONS
TEXAS INSTRUMENTS, INC.

K-35



AFWAL E&V Workshop POSITION PAFER. APSE Tool Taxonomy 0

SECTION 5

POSITION PAPER. APSE Tool Taxonomy

In order for the E&V effort to be a long teim success, it is necessary 0

to create a flexible and complete taxonomy of APSE tools. The

fundamental ability to classify a tool will be invaluable ill
identifying validation requirements for tools submitted for inclusiot
in an APSE In the sense that the taxonomy provides a framnework for
definlition of basic terms and scope for E&V activities, the careful
construction of the taxonomy is crucial to the succes- cf the E'
effort There are several nontrivial issues that must be addressed it)
oy-dei to create a workable classification system:

A more complete elaboration of the overall APSE structure

2' A complete 12st of too] attributes that have Impact LIport the.
capability to evaluate or validate a particular tool

3 Specification of general requirements and allowable"
variations for each tool class for purpose, of evaluation ar..

validation

4 Accomodation of new technology within the general E&%,

framework: for the taxonomy this generally implies a

mechanism for adding classes to the E&V taxonomy as well as ..

addition of new tool attributes that serve the E&,V activity

= 1 Overall APSE Structure

The now famous "onion skin" conception of the APSE used to describe its
relationship with the MAPSE and KAPSE layers of a software engineering S
environment is useful as a conceptual model, but is not suffciently
detailed to provide a practical basis for a meaningful classification
and validation of tools. The classical APSE conceptual diagram is
related to the desired verifiable APSE in the same way that a flowchart
is related to a structured program: many flowcharts (APSEs) may be
functionally equivalent to the structured program (verifiable APSE), 0
but are not understandable oT maintainable (verifiable)

The primitive control structures of structured programming provide a

standardization of the elements of algorithm development. Continuing
the above analogy, the standardization of interfaces within a more

Texas Instruments 15-Feb-1984

K-36

°..". . , . - .''.. -..-': '...', .."..'''..''- .'L ,.'' ''. '% , ',- '-/ '-_''-,_, _,'' _:L ,' ' L _ L _ .: :_" . ' ._ .50 -



AFWAL E&V Workshop POSITION PAPER APSE Tool Taxonoom,-

fully elaborated APSE structure will provide a sound basis for the
construction of tools that may be properly evaluated and validated
The elaboration of interfaces along with a more complete elaboration 0-:

the structure of an APSE should include:

1. identification of standard interfaces between the gross
layers of an APSE, thus specifying allowed interfaces betwee7;
the tools residing at differing layers of an APSE.

2 identification of allowed interfaces between the tools at a
particular layer of an APSE.

2 piovision of a mechanism for tightly controlled eyception. to
the above standards, generally reserved for new classes of
tools not yet invented 0

T his standardization will greatly contribute to the feasibility of

val..ation of an APSE, as communications paths will be constrained A
happy side effect will be the promotion of portable softwaie tools. the

software components industry, and the elusive "software bus " Thic s

level of standardization probably cannot be achieved in a first
generation APSE, as the ALS and the AIE are already well under way, but
can be i-lcsed on future development of mature APSEs

berniincl point for a source of candidate interface stanuards is the
Open Systems Interconnctio) (OSI) Reference Model foi distributed
infoimatio systems (Day 83] While this model is generalIy iy-teide:
to arply to distributed computing systems as the name implies, the
implementation of the common protocols and machine inteifaces is
sufficiently software inteysive to offer a guide for interfacing of
.oftwave components in an APSE Further, as this model ma'es no firm
assun'-ptions regarding the physical interconnection or proximity of "

processing nodes, use of this model as an elaboration of the general
APSE structure would support the implementation of an APSE formed from

collection of economical work stations, data base machinea., and
communications controllers, perhaps spread over a laige geographical
area Nevertheless, one could implement such a model within the

P -onfi nes of a typical mainframe computer. Clearly, the above t-.7 0
-xtremes of implementation strategy would require considerable
attention to design of interface implementations with efficiency very
high on the priority list.

5.2 APSE Tool Attributes

A taxonomy for APSE tools should promote the evaluation and validation • - -

of individual tools to be placed into an APSE as well as the overall
APSE itself. A meaningful taxonomy should include as attributes items

Texas Instruments 15-Feb-1984

K-37

S
.1



AFWAL E&V Workshop POSITION PAPER APSE Tool Ta)onomy

from the following two general classifications

1 Gene'al categories of tools.

2. Interfaces between tools and layers of the overall

eny ii-onment.

A categorization of APSE tool types has been constructed at the
National Bureau of Standards (HOU83]. In summary this work has
identified a taxonomy roughly based on the computing paradigm o~te
refeired to as "INPUT-PROCESS-OUTPUT The general classes of toc
types has been set as:

I Management

2 Transformation

3 Static Analysis

4 Dynamic Analysis

-leaily, in many respects this classification can encompass practically
,1l currently known tools that are general in some setise to the
aeveloprent of Ada programs The taxonomy is furthei, elaborated -
through the delineation of both input and output characteristics It

should be pointed out that the taxonomy described is not a mutual]j
exclusive partitioning of the "tool space" nor is it likely that any
practical taxonomy based upon functionality could form a mutually

exclusive classification of tools For example, an automated
!equirements processor geared to produce skeleton Ada code ii, somP

project data base with traceability "hooks" could be viewed as both a
member of the "Transformation" class and the "Management" class This
critique is not meant as an indictment of the work cited, but does lead
:,Te to search for more attributes that may be usefully ascT.ibed to APSE
tools for the purposes of classification. A pragmatically useful and
esthetically pleasing taxonomy of APSE tools should be based upon 0
attributes that may be verified through various methods of testing,
whether automated or manual in nature.

The taxonomy outlined in EHOLJS3] is not geared to express or capture

any tool dependencies. While the taxonomy does implicitly recognize

that tools may be used in combination to accomplish a particular end
("Pipes" are noted as a possible control input to tools). there is no
explicit means to denote the internal dependence of a complex tool
written as a system of programs run under control of an APSE executive
Further, for programs that can accomplish their end only with the
cooperation of tools that already exist in a validated APSE, the need
for such expression is more crucial. Complex integrated tools that are

Texas Instruments 15-Feb-298.1

K-38



AFWAL E&PV Workshop POSITION PAPER APSE Tool Taonom,

not easily classified may be dealt with upon a case-by-case basis
examples of such tools are multi-computer hardware test facilities that S
may provide specialized user interfaces at the APSE level for taiget
system interaction as well as more conventional terminal interactior

facilities

Meaningful specification of functional behavior of software systels iz

still an object of active research in academia, government, and

industry It does not appear possible at this time to base tc ol
classification for purposes of evaluation and valida+ioy, upn, &
functional specification alone. Certain kinds of tools are rather well
understood, and may be evaluated in this manner, such as an Adi
compiler via a test suite derived from the language specificatior A

!inne-oriented editor may be similarly handled, but otheT tools may r c)

be easily handled in this mariner.

The interface requirements of many tools appeal to be somewhat simplei

:tc specify in a great many situations If a tool were sreciec tn
'esp .ct to its interface requirements as well as Its fLc t tIor' .
I ehavior, the operational evaluation of that tool may in part be ,
Serif.cation that the tool only uses standardized interiaces for acces

_'u sr'vices provided by the CAIS oi other tools found w;thin art AFSE

inally although theie is great cate taken 2in the overall c'nCepttal
I CetL Cf an APSE to minimize machine dependenc ies. there W1I
ndo.btedly be tools that are explicitly machine dependent This I,

Particularly true of tools that provide machine-dependent teSting and
,i~air'.airance support. Such tools are instances of those that may hav.
:nterj aces to support facilities at the CAIS, MAPSE, or APSE l el. a-

at interfaces that would be currently based upon the primitive
;ack.qe LOW _LEVEL _ 10. It may be that table-driven interfaces May b -
devised to further hide the machine dependences found i, such
facilities, but this level of standardization may occur only later it
the development of the APSE E&V activity.

5 3 General Requirements

The existeTce of the taxonomy is not well served unless part of the
attributes for a particular class of APSE tool include facilitien
required to evaluate and validate a candidate tool There aie several

issues that must be resolved at this level

1 What functionality should be required to support tool
validation? For example, should all candidate tools support

input/output redirection or at least not foreclose use of
redirection capabilities within an APSE. One obvious

exploitation of input/output redirection would be the

creation of files of keystroke sequences for text editor or

Texas Instruments I5-Feb-198.

K-39



AFWAL E&V Workshop POSITION PAPER APSE "ool Taiono,m

word processor validation.

2. Should validated tools be accompanied by a simulatoT so trat
mock environments may be built for new tool development or
validation if actual use of an existing tool dL' ring
development/validatior, is deemed infeasible? Cadi~date tocl"".
that are designed to work in a coordinated way with existing
APSE tools may be more easily developed and validated if such
simulation facilities are available This may be 6
particularly helpful for tools that have heavy interaction
with one (or more) users or potentially large data bases
The desirability of such an adjunct to validated tools is a
matter of technical and economic tradeoffs.

3 What level of parametric adaptability is to be required o•
APSE tools? By parametric adaptability, Le mean the
specification of hardwaTe specific oi interface spec1":
values by a potentially changeable table or list. Te-t
editors and graphics telminal inteTfaces ale paTticularlu
sensitive to variatic,rs in the actual target h.:rd'ware to be
used, as will be ary general hardware debuggitig facility
Tools that are not configurable in this or an equivalent
manner will likely be so hardware dependant that portability
will be severely compromised. Some of these issues may be
covered partly in the CAIS specification. However, at this
time the CAIS specification is still in a state of flux. and. .
it is likely that sone adaptability issues will rC;t be S
handled at the CAIS level

5.4 Accomodation of New Technology S

The accomodation of technological change in the setting of standards
-or APSE tools is of fundamental importance to the success of the goals
of the E&V task. If explicit mechanisms for evolution and growth o

the E&V standards are not incorporated at the beginning, there is some
risk that many new tools that incorporate new innovations in hardware S
and software will be left in "Category A" status [AJP0S3, pp 183
subjective evaluation only.

5.5 Conclusions

Most of the above issues, though they require some advances in) the
state of the art or practice are not purely technical. There are in
some respects economic and cultural issues to be resolved Certain
classes of existing tools have achieved a status of respectability and

Texas Instruments 15-Feb-1984

K- 40



AFWAL EtV Workshop POSITION PAPER: APSE Tool Taxonom,

have established communities of users. The acceptance of eiistinJ

tools into an APSE may require extensive effort and expense as ne" 0

standards of development and acceptance are drawn and erforced upcn tn.
tool developers. Some tools that are widely used may become les-.

attractive due to the additional code volume of instrufmentat i oT,

required for support of validation. The incorporation of ne,..

technology into an APSE is vitally important and the provision fo .-.
technological change is vital to the success of the E&V effort. IT.
order to successfully cope with the above issues and properly seve tht. 0

end user of a future APSE, it may be prudent to corsider a mcnr
evolutionary development of tools within the APSE framework, rathe"-

than the creation of full-blown mature tool sets .

K4

S

0i

S

-

Texas Instruments 15-Feb--1984"-"-

K-A41



APPLICATION SPECIFIC -APSE EVALUATION

ASHA KANT

LITTON APPLIED TECHNOLOGY

K-425



APPLICATION SPECIFIC -APSE EVALUATION

Applied Technology Asha Kant

(Litton Applied Technology) S

INTRODUCTION

This paper brings to attention the least addressed area of

evaluating the Ada* Programming Support Environments specific to the appli-

cations in which they will be employed. It considers the battlefield sce-

narios and information processing requirements of the future based on Litton

Applied Technology's business base and also looks into the need for tools that

support the efficiency goals of the Ada language. However, to qualify these

tools in an effort to meet the system specification is a future challenge.

GENERAL )ISCUSSION

The overall task of evaluation and validation of the Ada prog-

ramming support environment is very broad, encapsulating a wide area of -

performance analysis, although the initial goal is to determine the

conformance of APSE's to CAIS. APSE-Ada programming support environment is a

collection of software engineering tools needed for software engineers to

build the software system efficiently (e.g., a subsystem of a mission critical

system). Therefore, the evaluation of software engineering tools requires two

performance scenarios - one, to meet the goals of software system (subsystem

of mission critical systems) and the second is the efficient building of a

software system. If we try to prioritize the two performance scenarios, the

software system goals would then take precedence. Here, I would like to use

an example of a system manufacturer who has a large number of screw types to

be tightened. If he were given only one type screwdriver to use, he would not

*Ada is a registered trademark of the Department of Defense, Ada Joint Program

Office.

280320-COS

K-43
. - .i' -'.'S



be able to do the work properly, and maybe not at all, unless he obtains

additional type screwdrivers to cover the variation of screw sizes and types

in the system. If he has to design and make these screwdrivers at the time

when he is suppc. ed to be actually tightening the screws his schedule to

deliver the system will be ruined. On the otherhand, if proper tools had been

available to him prior to manufacturing start-up, the system requirement could

have been met. In software engineering, typically, the software tools are

developed in a less timely manner and application requirements are seldom con-

sidered in the design of the tools. Software tools are normally generic in

nature and are not designed to satisfy the specific performance needs of the

software system under development. There exists a need to ensure that ad-

equate software development tools are made available in a timely manner to

meet the industry needs for various performance critical applications.

The Ada Programming Support Environment (APSE) must be eval- 0

uated in terms of the value these tools bring to the applications in which --

they will be employed. One such application is Airborne Tactical Electronic

Warfare Systems (ATEWS). This application is mission-critical and requires

high throughput signal processing featuring high reliability, real-time opera-

tion; as well as space, power, and producibility constraints. The accommoda-

tion of Ada to these requirements and to the systems produced by Litton, is

currently being'addressed by Applied Technology in an IR&D project titled

"Language Analysis for Electronic Warfare." The results of which will bear $

directly on the performance requirements for Ada compilers.

The ATEWS of the next decade will perform the traditional radar -

warning receiver functions (detect, deinterleave, analyze, identify and report

threats) in a vastly more complex electromagnetic environment and in concert

with other on-board systems. Anticipated pulse densities of up to 10x pulses

per second will levy stringent throughput requirewents on signal processors. . .

The increasing complexity of on-board systems is leading to more automation

and integration. Data reduction by 'expert' systems will be the basis for

automation, but will force ever higher processing throughput requirements. . .

280320-CDS K-44

-70

.................................................................



These will become even more stringent as increasingly complex algorithms and

concurrent architectures are required to integrate the sampled environment and

report the information to the appropriate on-board systems in real time.

The algorithms and the software required to implement them have

traditionally been written in Assembly Language to minimize ATEWS' memory and

operation cycle requirements. The application of a high order language to 0

such systems must satisfy the same requirements. Efficiency and speed of op-

eration must be the hallmark of APSE if Ada is to be the basis of ATEWS soft-

ware.

Let us look at the engineering disciplines involved in building

such a product. A product has to go through design, development implementa-

tion, test and integration, and life cycle maintenance phases while meeting

stringent specification requirements. Each phase must have its own-set of

tools to make it a success. Software also requires engineering disciplines to

make it successful. It's productivity and reliability also depend on the

availability of sophisticated tools. Since these tools are inevitably unique,

they are long-lead items, and should be turned on long before the product

program is turned on. In fact, the tool development process should be

continuous as production lessons are learned.

Compliance to the standards is an important issue and

productivity improvement is an important goal. However, the ultimate success

of a tool lies in how useful it is, how well does it serve its purpose, how

well can it build the system. Looking at battlefield senario - software

systems similar to ATEWS have always been and still are being done in Assembly

Language because tolerances are extremely tight. Reaction time requirements 0

are demanding, space constraints are severe, and the algorithms are heuristic

in nature. Can these software systems be written in Ada? The answer at the

outset would be "of course" or "why not"?. However, these answers do not

quantify or substantiate, and no known examples exist. The first step should* -

be to clearly identify the performance requirements of the Ada compiler and

~7.-. i

280320-CDS

K- 45

I.0

. ' .

!. . . . .. . . . . . . . . . . . . . . . . -



0

run-time system for these special applications. There will be challenges yet

to be met. Specifically, qualification of these APSE's to meet the system

specifications.

CONCLUSION

The past four years have seen the evolution of Ada to the cur-

rent ANSI-MIL-STO 1983, the formation of AJPO and KIT/KITIA, the development

of CAIS and the Ada implementors of ALS for the Army, AIE for the Air Force

and ALS/N for the Navy. The formation of Ada Validation Organization to en-

sure the correct implementation of the standard Ada language has been a step 0

in the right direction. Other efforts have been targeted toward evaluating

the adequacy of the language definition from the applications side, and it is

the breadth and usefulness of this latter investigation that this paper add-

resses. In order for Ada to achieve its potential, APSE development must be S

predicated on the performance and efficiency of various applications, and not

just on conformance to CAIS.

280320-CDS
K-46

. - .._,_ -_,- .- ._ -. -. -. -. - .. ..... ., L .. . _ . .. .. .. .. .. -. . > .i - - L • -i i .. - .S i



BALANCING STANDARDIZATION AND INNOVATION
IN THE EVALUATION AND VALIDATION

OF ADA PROGRAMMING SUPPORT ENVIRONMENTS

ROBERT J. KIRKPATRICK, JR.

DATA GENERAL

K-47



0

Balancing Standardization and Innovation in the
Evaluation and Validation of Ada Programming Support Environments

by

Robert J. Kirkpatrick, Jr
Data General

The Evaluation and Validation (E&V) of Ada Programming Support
Environments (APSE's) must be a balancing act between standardiza- 6

tion and the need to encourage improvements. Both are absolutely
necessary; yet, if they are not carefully balanced, either can
spell doom to the overall effort. Fortunately, there are techniques
that can be used to ensure a maximum of standardization while
retaining the ability to exploit new and improving Software Engi-
neering technology. It is my position that this effort should focus
on encouraging the identification and use of those techniques.

There is little doubt in anyone's mind that there needs to be
more standardization in Software Engineering. We have long accepted
new and substantially different environments each time a new
computer or operating system is introduced. Standardization has
largely been confined to a single manufacturer where each new 6
effort is advertised as being compatible with the last. Often this
advertising is only that and the poor customer is required to pay
the costs of upgrading.

If that customer wants some special capability available only
on another computer, he is really out of luck. Standardization -

across manufacturers' machines is non-existent. Recently there have
been some gains with the introduction of generic operating systems.
UNIX, MS/DOS, and CP/M have gone a long way toward standardization
of environments, but they are still a long way from providing a
"standard" Software Engineering environment in which to work.

The cost of a great deal of variety in environments is high%
most things that are being programmed these days have already been
programmed to some extent in other environments. That says that
much of the money that is being spent on software these days is
being wasted because of the lack of a standard programming
environment. How much more productive we could be if we were able - 5
to draw on the vast supply of software that has already been
produced each time we begin a new sofware project.

K- 48



- Si

As a major manufacturer of software, Data General recognizes -

that fact and evaluates every new standard that comes out. Even de
facto standards perpetrated by competitors with little or no
technical merit are considered simply because they are standards.
Our customers demand it; we would be out of business without it. No -

one doubts the need for more standardization in the software
business.

On the other side of the scales is innovation. Software
Engineering is not a mature field. As fast as we produce a techni-
cally exciting software system, someone else produces one that is
even more exciting. Systems are obsolete before they hit the 0
market. The worst part is that in order to advance the art, we must
do everything within our power to encourage this rapid advance. To
institute programs that stifle this innovation, is counter-
productive and morally unconscionable.

The computer industry is young and dynamic. Sofware Engineer-
ing is younger than most other computer related fields. We cannot
expect that the techniques we now use or even those we can envision
using will be viable in ten years. We must position ourselves to
ride the learning curve of Software Engineering for the foreseeable
future. It would be easy to ensure that the APSE effort could not
by improperly standardizing upon specific things that will be - ]
obsolete in a short time.

Along another dimension of technical innovation is the problem
of excluding certain manufacturers from the game by standardizing
on something their products cannot support or cannot support well.
To believe that these companies have nothing to offer the effort is 4i
ludicrous. Big computer companies have no monopoly on good Software
Engineering ideas. In fact, many really substantial improvements
over the last ten years have come from smaller companies. If we
write standards that preclude participation by anyone in the
advancement of the art, we will pay the price.

One of the easiest ways to standardize is to find out what is
in heavy use today and make that the standard. In several cases,
previous standards activities have taken this approach and it has
proven to be costly. If we were to do something of that kind now,
we would choose VAX/VMS or the IBM 370 or the IBM PC as "standard"
or we might write our standard heavily favoring one of those. In S
five years, those machines and even their architectures may be
obsolete. How viable is a standard based on an obsolete machine?

It is therefore incumbent upon those that write the E&V
standards for APSE's to be very careful not to inhibit innovation
or favor existing systems while at the same time ensuring enough S
standardization to allow software to be moved between APSE's
without change. It is indeed a delicate balancing act; we should
not expect a simple solution.

K-49

-.9. i

-:::::::::::::::::: :-:: :: :.:...-........-..-...--..-.......-.-......ii :i



0

There are a number of mechanical techniques that can help.
Being careful not to specify anything about internals is an
absolute. Many of the differences between machines can be encap-
sulated in different internals. If the E&V effort chooses to
specify the internals, some systems are not going to be able to
support those internals. Rarely, if ever, is it really necessary 0
to specify internals; it is merely expedient. We cannot afford the
expedient solution in this case.

Focussing on the interface of a feature rather than how the
feature is provided helps, too. As software engineers, we often
times have a particular implementation in mind when we propose a S
feature. Certainly our idea can never be the only way to implement
that feature. If we focus the standard on the feature instead of
our view of a "correct" implementation, we ensure that the feature
on a different system is not constrained out of existence.

Another required principle is to avoid features that are "
specific to one machine or manufacturer. It is often times diffi-
cult for some people to know what those features are because they
have dealt so extensively with a particular system. Nothing substi-
tutes for a variety of backgrounds, manufacturers, and opinions
present as standards are written.

There are many other simple principles; the ones listed above
are just samples. The important thing is that this E&V effort
should focus on gathering those simple principles and applying them
in its work. Otherwise, its results will be outdated in a few years
or counter-productive from the start.

K- .

Si

K-50 ." .

."" "°'



I TOWARDS APSE STANDARDIZATION

SUSAN MICKEL
GENERAL ELECTRIC COMPANY

K-5



Towards APSE Standardization 0

Susan Mickel 408/734-4980
General Electric Company

Military and Data Systems Operation
1277 Orleans Drive
Sunnyvale, CA 94086 0

In the past 1-2 years, as most Ada language issues have been
resolved and compilers have become a reality, the focus has S
shifted to environmental issues. It was realized that a language
cannot be truly portable without a standardized environment. One
can separate portability problems into two areas:

1. non-standard language features

2. dependence upon environmental resources (e.g. operating
systems)

The standardization of the Ada language should eliminate the

first type of portability problem. It is now time to address the
second type.

The KIT and KITIA were established to develop a single standard
definition of the Kernal APSE. This is akin to defining a

* portable operating system that is so complete that all resources
required to develop any software in any application area is
already included or can be supplied by writing an Ada package.
Quite an ambitious undertaking considering that to date, des;ite
numerous attempts, no truly portable environment has proved
successful.

While the CAIS is a noble effort, the goal has not been achieved.
The difficulties encountered by the KIT and KITIA were more
extensive than originally envisioned. Upon reflection, it is not
surprising. Programming languages have been studied for many
years. Most of the control and data structures have been
established both through theory and use. Still Ada remains
controversial. The concept of a software development environment
is much newer and has not been studied as throroughly. To date S
there is no standardization procedure for environments analogous
to ANSI language standardization.

This approach of defining a single environment is infeasible, I
believe, for the reasons outlined above. A less ambitious, but
more viable approach is as follows. First, develop a standard S
notation for describing the resources provided by an environment;
i.e., a systematic method of defining precisely and completely

K-52
!S



. S

its capabilities. Such a notation, would facilitate the 0
comparison of different environments, which is currently akin to
comparing apples and oranges.

Second, having such a notation and defining some of the most
successful existing environments (e.g. UNIX) in terms of this
notation, a common set of core resources would doubtless emerge.
Searching for such a common set without that standard notation is
difficult and imprecise.

Third, instead of seeking to define a single KAPSE, a family of
interfaces should be considered. The wide variety of DoD
applications makes this necessary. To include all resources
required by all applications in every single environment is not
feasible. In many cases development is conducted quite
differently for different applications: real time versus batch,
microprocessor versus main frame. Further, the need to transport
systems between application areas (beyond general purpose
utilities) has not been established. The goal, therefore, should
be the establishment of a family of standard environments.

r0

K-53



STANDARDS OF EVALUATION AND VALIDATION FOR 0
ADA PROGRAMMING SUPPORT ENVIRONMENT TOOLS

JAMES F. PARLIER
GENERAL DYNAMICS

K-54

S. 2-;2i.'

- Sll l i

K- 54 '", ' '



STANDARDS OF EVALUATION AND VALIDATION

FOR

ADA PROGRAMMING SUPPORT ENVIRONMENT TOOLS

Janes F. Parl ier

General Dynamics
Data Systems Division

Western Center
San Diego, California

This paper addresses the issue of Ada Programing Support Environment (APSE)
Evaluation and Validation (E&V) concerned with the establishment and

enforcement of requirements and standards. The foremost eed of an E&V 0

effort, is directly related to custaner standards of tool set quality. The
acquisition and implementation of tools must be based on the tool's ability

to meet or exceed the approved, contracted standard. Standard compliance

should be based on a top-down structure of requirements from the most high 0

level requirements established by the Ada Joint Program Office (ATJO) for

transportability and operability, to the lowest level of requirements for .

specific tool life-cycle operations and maintenance. This model for APSE
acquisition and implementation will be mirrored completely and consistently -

in the E&V process.

here have been marry studies directed toward the determination of

appropriate factors fcc software tool and tool environment quality. Most of

these factors are qualitative rather than quantitative. The top level -

characteristics typically evaluated are: reliability, testability,

usability, efficiency, transportability, maintainability, and

interoperability. Of these, the two considered most critical to the APSE

are transportability and interoperability. The APSE Interface Team: Public

Report, Volume 1, 28 October 1982, defined interoporability as "the degree

to which APSEs can exchange data base objects and their relationships in

usable form without conversion"; transportability, in the terms used by the -

APSE Interface Ter, compliments this. Transportability of an APSE tool is

defined as "the degree to which it can be installed on a different APSE

R K-55 0

,,- *- .o o.. * %' . •** **- ° J -. -,. - ... ,- . . .- - * : '-.. ° ... . .......



without reprogramming; the tool must perform with the same functionality in 0

both APSEs".

At all stages of the life cycle of APSE formulation, ead tool or tool set

should be "verifiable" under these basic terms. The desired product (the

requirenents and the design) and the actual product (the code) should be

represented in a structured, concise, and self-descriptive manner so that

they can be efficiently and effectively compared, under the purview of

applicable standards. Emnphasis on particular quality factors of E&V will

vary as the tool or tool set qualifies for implementation into the APSE.

However, the specific definition of quality and the "degree" of

transportability and interoperability should be specified during the

reuirements phase of APSE developnent. It is thereEore proposed that APSE

acuisition and implementation be viewed within the constructs of a typical

systems acquisition model as follows:

I I OI I I I
I RHDUIREMEN'IS I MAKE OR I DESIGN OR I DEVELC*ENT I IMPuEEENTrI]DN I
I DEFINITIDN I BUY I PROCURMENT I AND I OPERMdION I
I I DECISIONS I I TEST I MAI ANE IT.4P4I I I I I I -' . i

Without this structured procedure, standards determination will be virtually

hopeless - without standards, Evaluation and Validation would be valueless,

and without proper and approved E&V Practices and Procedures, APSE quality

and effectiveness will be sacrificed.

For purposes of clarification, the fundamental aspects of a standard will be

stated. There are three integrally related considerations; form, fit, and

function. Zrm is defined as the physical characteristics of the tool. Fit 0

is defined as the adaptation of the tool to the desired envirornment.

FlJDtio is defined as the performance capabilities of the tool. These
characteristics are all directly applicable to APSE E&V. Additionally,
these characteristics should be embodied in APSE formulation an APSE E&V 0

standards at each phase of the life-cycle previously delineated. Once
approved and in place, deteimination of the correctrss of the final tool or

K-56



0

tool set can be ensured. To emphasize, validation can only be accomplished

by verifying each stage of the APSE life cycle. This process must precede

any acceptance of the tool or tool set by the custamer (i.e. custamer

certification).
S

It has been proven time and time again that ore of the most prevalent and

costly mistakes made on software projects today is to defer the activity of

detecting and correcting problems until late in a project. The success of

phasing verification throughout the formulation/acquisition cycle depends

upon the existence of a clearly defined and stated product at each phase.

For example, the Requirements Definition phase product, is a tool set

requirements specification. The Development/Test phase ends with the

generation of a tested tool set (i.e., the tool set is judged to be
technically complete, consistent, and correct, through an exination of the

behavior of the tool set by. executing it on sample data sets).

Consequently, if lower cost and higher quality are the goals, E&V should not

be isolated to a single stage in the acquisition process but should be

incorporated into each APSE formulation phase.

.-0

K-S7 .

............................................ .....

-. -. -. - -. - _ .' . ,



The following table provides a general overview of the process.
Table K-I. E&V Activities

I LIFE CY(E I
I PHASE E&V Acr VITES .- '

I REQUIREEUTS I DETERMINE E&V PLAN
I DEFINITION I DETERMINE ADIDQUPCY OF REQUIREMENTS -

I GENERATE E&V TEXNIQUES/METHODcLOGIES I

I MAKE OR BUY I IMPLEZENT TECHNIQLES/METHOOLOGIES: I
I DECISION I DETERMINE CDST, SHEULDNG, ND

I ERORMAN(C CRITEIA

I DESIGN CR I DEVELOPMT OF E&V PROCEDURES/ I
i PRoJREENT iSpEaFI(ATIDNS

I DETERMINE ADQUACY OF DESIGN "

I DEVELOPMENT I DETER1NE CDNSISTENCY WITH DESIGN
I AND TEST •

I -- I -- _--

I. I I- . -:

I I MFEMENTATON I DETEMNE ADEQUACY OF IMPLEMENTTIDN, "
I OPERATION, ANDI OPERATON EFFECtIVENESS/EFFICIENCY, AND -

MAINTMANC I SYSTEM MN ITNANCE 1EREO4ANE "I-
I RWRESSION TESTING I

Common to all phases are; standards compliance determination, baseline

reporting, E&V team status reporting, and requirements traceability and

analysis. 0

aM~ry

Two principle recommendations are provided in this paper. First, standards
detailing the form, fit, and function requirenents of an APSE must be

established. Following this, standards or specifications outlining E&V

involvenent in APSE formulation/acquisition could be produced. Second, APSE -

tool set formulation and/or acquisition should follow a time phased life

cycle approach. This will enhance the orderly execution of E&V activities

K-58 0



0

by proviiding better visibility, ammuniation, and custaner/contr actor .

mnagemnent control. T1hough a numiber of interface issues renain unresolved
* in regards to the CAIS Version 1.0 of 30 August 1983, like access control,
* co~nfiguration maagement, and security, APSE E&V will req~uire a conentrated

effort on the part of the Ada comurnnity to determine and execute standards
* ~of excellence for DOD' s new and universal computer prograing language.

K-59



THE IMPLICATIONS OF SOFTWARE TARGETED FOR0
EMBEDDED COMPUTER SYSTEMS ON THE EVALUATION AND

VALIDATION OF ADA PROGRAMMThING SUPPORT ENVIRONMENTS

JOHN REDDAN
SYSCON CORPORATION

K-60



The Implications of Software Targeted for
Embedded Computer Systems on the Evaluation and

Validation of Ada* Programming Support Environments.

John Reddan -

SYSCON Corporation
3990 Sherman Street

SnDiego, California 92110
(619) 296-0085

K-61-S

. ..



1. INTRODUCTION

The Ada Programming Support Environment (APSE) is to provide an

environment tor the design, development, documentation,

testing, management, and maintenance of Embedded Computer 0

software, written principally in the Ada programming language.

An Embedded Computer System will often execute with an

environment foreign to, and more constrained in resources than,

the APSE upon which the ECS software is developed. As such, the

Evaluation and Validation (E&V) of APSEs should consider the

characteristics and tools necessary to develop software on an

APSE targeted for the potentially limited Embedded Computer

System Environment (ECSE) in its classification scheme.

1.1 Background

Ada was developed with the goal of establishing a single high

order language for new DoD ECSs. Early in the development process

it was realized that the acceptance and the benefits derived from

a common language could be increased substantially by the

development of an integrated system of software development and

maintenance tools now known as the APSE. Later the Kernel Ada

Programming Support Environment (KAPSE) Interface Team (KIT) was

established to define a standard set of Kernel interfaces to

ensure the interoperability of data and the transportability of

tools between conforming APSEs. The Common APSE Interface Set

(CAIS) developed by the KIT provides the virtual operating system

on which tools run, as well as the minimum set of command, edit

and similar functions required to transport tools.

The Evaluation and Validation (E&V) of Ada Programming Support

Environments task is being created to develop the techniques and

tools which will provide a capability to perform assessment of

APSEs and to determine conformance of APSEs to the CAIS. Some of

the specific goals of the APSE E&V are to develop requirements

for the APSE E&V, and to develop an APSE Evaluation capability.

K-62.........



Some of the steps envisioned to accomplish this (as stated in the

E&V Plan [2]) are 1) to identify APSE components, and 2) to

identify APSE interfaces and their classsifications. The basis .-

of the identification and classification is a Taxonomy of Tool

Features for Ada Programming Support Environments developed by

the Institute for Computer Sciences and Technology of the
National Bureau of Standards.

The Taxonomy is function/feature oriented, and provides a

hierarchal function/feature classification of APSE tools

under subjects such as Management, Static Analysis, Dynamic

Analysis, and Machine Output. At the feature level, there is a

substantial variation in detail, ranging from 11 features per

function to 1 feature per function. The current Taxonomy's

omission of detail in areas dealing with target dependencies is

unfortunate, because many features needed to support targeting of -

software for ECSEs have been excessively condensed into single

features...

K- 63

....................................-. ..

' '.. . ..

I..



2. EMBEDDED COMPUTER SYSTEM ENVIRONMENT REQUIREMENTS 0

The mission critical software found in Embedded Computer Systems

requires a minimal environment which includes a highly efficient,

tunable run-time system, primitive file and command handling, and .
some types of Static and Dynamic Analysis tools. This minimal

environment is essential to meeting the strict performance

requirements associated with most ECSs.

r0
A critical factor in an ECS is the performance of the Embedded
Software. Table K-2 shows some of the ECSE characteristics

needed to produce efficient, high performance ECS software. A

complete set of characteristics like those shown in Table K-2 can -
S

be used to form a set of requirements for the ECSE.

Trab Ic K-2. Rcoqu i od Cha~ractecristi cs of ECSIE

Feature Provided By . S

Position Code/Data Structures representation clauses
in Memory linker

Control maximum memory pragma controlled
allocation pragma memory-size

linker

Set maximum number of tasks no use of task objects
and active tasks linker/RTS
Control Overlaying linker/RTS

Control which Pages/Segments linker
of Memory are Swapped

Control Size/Number of IO linker
Buffers

Insure Exclusion of Unused linker
Library Subprograms

K-64

~~~~~.. .... . .. .. .-. ,- . . . . .. . . °. . . . .. . -°. . . .. . . . .


~1

3. EVOLUTION FROM APSE TO ECSE

The APSE itself is not directly required to support any or all of

the features required of an ECSE. What is required of

Programming Support Environments are facilities to exercise the

Target system (including the ECSE) for the development and

testing of software for the target system.

r Several general approaches exist to solving this problem. They
include 1) complete simulation of the target environment 0

including specific and possibly custom devices, 2) cross

compilation and downloading of the program to the target

computer, and 3) cross compilation and transfer to the target
computer via bootable media. Each of the approaches and the

numerous variations which exist, possess distinct strengths and

weaknesses. A disadvantage of proceeding immediately to the
Target System is the more primitive nature of the ECSE (due to

efficiency considerations), which often implies fewer testing and]
debugging tools and resources.

The key to developing Embedded Computer software on an APSE is

the existence of appropriate tools to facilitate the targeting of .

the software. The requirements for these tools are formed in

part by the required characteristics of an ECSE, such as those

shown in Table K-2. Table K-3 lists some basic tools which might

be used in an APSE to target software for an ECSE, depending on

the approach selected.

Table K-3. Tools for Transit ioning from APSEs toLCSs

Cross Compiler
Target Machine Loader
Target Machine Instrumenter
Down Loader
Bootable Media Creator S
Data File Translator (test file
generation and data analysis).

K-65

4. CONCLUSION 0

One of the initial efforts of the E&V Task will be to identify
APSE components, interfaces, and their classifications, using as
a basis the APSE Taxonomy developed by National Bureau of

Standards. The Taxonomy being used as the basis of APSE component
classification is primarily function/feature oriented, and does

not specifically mention any of these characteristics shown in

Table K-2. It also includes many of the tools required for

developing software targeted for ECSEs, such as those shown in

Table K-3. under the single category OUTPUT/Machine Output/Oject

Code tj the APSE Taxonomy.

As is readily apparent from the examples shown above, the current

Taxonomy does not provide sufficient granularity in the proper

areas to address the requirements and tools needed to provide

methods for developing software on an APSE targeted for a
specific ECSE. The requirements presented by Embedded Computer -- 0

Systems and their Environments, which are the motivating

applications of Ada software in the DoD, should be considered in

the formulation of E&V criteria and classifications. The
ability to evaluate these areas is currently limited by the APSE . 0

Taxonomy deficiences cited above. It is clear that a more

refined and consistent Taxonomy is required.

K-66i •

5. REFERENCES 0

1. Raymond C. Houghton, Jr., "A Taxonomy of of Tool Features
for the Ada Programming Support Environment (APSE)", Ada
Letters Volume III Number 3, November 1983.

2. "Evaluation and Validation Plan - Version 1.0", Air Force
Wright Aeronautical Labortories/Ada Joint Program Office,
November 1983.

K6S

S

K--?
0 ".

.. -t*..*.t'.**..*

COMPATIBILAITY OF RUN-TL'[SUPPORTJ FOR
AD)A AND) THlE CATS

AMOS M. ROIIRER
EG&G, WASCI

K-68

COMPATIBILITY OF RUN-TIME SUPPORT FOR

ADA AND THE CAIS

- AMOS M. ROHRER

10 FEBRUARY 1984

EG&G, WASCI0

MANASSAS, VA 22110

K-69)

1.0 ADA PROGRAMMING SUPPORT ENVIRONMENTS

The purpose of an Ada Programming Support Environment (APSE) is to support 0
Ada software throughout the life cycle of a computer system. The APSE contains
the following components: the data base, the system and user interface, and
the toolset. The data base contains all project information. The interface
links system users, the system itself, the data base, and the toolset. The
toolset includes support software for project development, maintenance, and
management. 0

The APSE has a structure to insure portability of user programs and soft-
ware tools. The first level of the APSE is the host hardware/software. The
second level is the Kernal Ada Program Support Environment (KAPSE) which
provides the data base, communication, and run-time support functions to use
the APSE. The third level is the Minimal Ada Support Environment (MAPSE) which 0
provides a basic set of tools to produce Ada programs and which can be extended
to form a total APSE.

In order for Ada programs and Ada tools to be used in any APSE, each APSE
must support a predefined interface for portability. Specification of the
interface in terms of Ada packages will make its use available to all Ada
programs.

2.0 COMMON APSE INTERFACE SET

In 1982, teams were organized by the Ada Joint Program Office (AJPO) to
study transportability of tools and data bases between APSEs. Since then, the
KAPSE Interface Team (KIT) led by the Navy and the KAPSE Interface Team
Industry and Academia (KITIA) have defined an APSE interface called the Common
APSE Interface Set (CAIS) to promote portability of Ada programs and tools.

The CAIS is described in terms of a node model which includes:

Structural Nodes - contain information on relationships between nodes
File Nodes - contain Ada external files
Process Nodes - contain Ada executable programs
Device Nodes - contain I/O device control

Operations on the nodes are defined in terms of Ada packages which form the S

CAIS.

The particular concern of this position paper involves the implicit run-
time support provided by the CAIS for process nodes. There are differences
between CAIS processes and Ada tasking which could impact tool usage.

3.0 CAIS PROCESSES AND ADA TASKING

In Ada tasks interact with each other via an entry call. For every ENTRY
declaration there is an ACCEPT statement in the body of the task. When the - -

ACCEPT statement is reached, the entry call from another concurrent task is -

processed in a rendezvous. During the rendezvous, the calling task is suspended S

K- 70 4
7S

and the ACCEPT statement is executed and parameters are passed. When this
critical section of code is finished, the suspended task is reactivated and both
continue on. O

CAIS process interaction is different from Ada task rendezvous. Processes -

can send and receive messages over named channels. Processes are suspended
until the message is queued on the charnel. When a process invokes a new
process, it is suspended until the new process finishes. If a process spawns a
new process, it is not suspended and continues execution. Processes can signdl
other processes via psuedo-interrupts.

The differences between CAIS processes and Ada tasks imply that the under-
lying run-time support will be different also. Implementation of run-time
support for both should be compatible so as not to produce conflicting software.
This is extremely important on systems where the APSE and Ada applications
programs are coexistent. Compatibility of run-time support is important for
these systems, especially in the area of APSE run-time monitoring of Ada
programs.

4.0 REFERENCES

a. ANSI/MIL-STO-1815A, Reference Manual for the Ada Programming -
Language, 17 February 1983.

b. Requirements for Ada Programming Support Environments "STONEMAN",
Department of Defense, February 1980.

c. Draft Specification of the Common APSE Interface Set (CAIS), 0
Version 1.1, Ada Joint Program Office, 30 September 1983.

K-71-

• -S -1

S

K-7ilLTI TT1

.. .. :T :
." . . • . o ,* . * .

EVALUATION AND VALIDATION ISSUES FOR

EMBEDDED COMPUTER SYSTEMS DEVELOPMENT AP3SES .

HELEN E. ROMANOWSKY

ROCKWELL INTERNATIONAL

KK-7

7

Evaluation and Validation Issues

f or

Embedded Computer Systems Development APSE.

by

Helen E. Romanoveky
Rockwell InternationalS

Collins Government Avionics Division

K- 73

Introduction

The Ads programming language was developed to combat the
rising cost of software development, especially the development
of embedded computer systems. Developing software for embedded
computer applications is hindered by the lack of vell-integrated
development support tools.

1St AIRpnj [DoD80] defined the requirements for an Ada
Programming Support Environment (APSE) to assist in the S

development of software for embedded systems. In light of the
randatory validation procedures for Ada compilers and since the
compiler is but one element of an APSE, it logically follows that
an APSE should undergo similar integrity and quality controls.
Evaluation and validation (E&V) of the components of an APSE,
and as a result the APSE itself, is of integral importance to the
quality of software produced with Ada. Therefore, to insure the
quality of an APSE and the resultant reliability of the software,
it is necessary to establish an accurate set of metrics and
standards by which to rate APSE tools.

The E&V effort should be in keeping with the embedded
computer development activity for which the Ada language was
designed. It is very important that the E&V work be directed
towards optimization of the APSEs for use in embedded computer
systems development. The E&V work should not be directed towards
trying to suit any and all potential areas of application. "0

This position paper will address two specific issues which
deal with the E&V of APSEs for embedded computer systems. The
first issue is the development of guidelines to be used by those
who want to or have started to build non-DoD sponsored APSE's.
The second issue addresses the development of the E&V
requirements for tools within an APSE, and more specifically, an
avionics oriented APSE.

!S

Non-DoD APSEs

An embedded computer system developer who has begun to use
Ada in his work has already made a commitment of sorts to a
particular toolset. When that user decided to use Ada, he saw -
the compiler as the top priority item with respect to which tools

K-74

~.-... .. _ -. , ,.., ." ., '.... ..-.. ,'... ,... ..

to obtain. Code generators for necessary target machines were of
equal importance. Once these have been obtained, then a user may
turn to completing his/her "environment."

Exactly how does the rest of the environment completion take
place? The user will either develop tools himself or purchase
commercially developed too ls. Because the "Common APSE
Interface Set" (CAIS) was not in existence at the time the
compiler was obtained, the user may not have had any plans to
make his toolset easily transportable and so was not concerned 0
with whether or not his tools would meet the interface
requirements set forth in the CATS. The E&V efforts can have a
large effect on this kind of Ada user.

The role that in-house developed tools and commercially 0
developed tools will play in the APSE E&V effort must be clearly
defined. For example, a user has purchased an Ada compiler and
linker for use on a VAX. Both of the tools will be tied to the
operating system on the VAX. As time goes by, the user decides
to obtain additional tools, such as a debugger and configuration -
management tool, to assist in his software development efforts.
These additional tools are also tied in to the operating system
of the VAX.

The above scenario illustrates that there is a need for
establishing exactly how much of an APSE must undergo E&V. Will
the operating system be judged to be an inherent part of the
toolset when E&V takes place on that particular environment? The

- fact that tools rely directly on a particular operating system
makes them non-readily transportable to another host machine.

* This lack of transportability is not compatible with the CATS. -
Does this mean that currently existing tools must be modified so 0
that they do not have a dependency directly on the operating
system before they can be considered as members of a valid
toolset?

Within the E&V requirements, there must be specific 0
guidelines written which will define the position of these vendor
or in-house supplied components of an environment with respect to
their influence on the evaluation and validation of a set of
programming support tools. If a user has already committed to
using a particular set of tools, then he has already made an
investment in those tools.

The most obvious investment is in dollars because the tools
were either bought or developed in-house. This dollar cost is
something which should not be dismissed lightly. A company should
not be forced to stop using tools already in-house just because-0
they may not have been DoD sponsored. The commitment to use Ada
in a company that currently has a toolset had to come before a

K-75

...- -..

full APSE was developed and before the CAIS document existed.
This type of user should be given fair consideration in the E&V
requirements and standards.

Perhaps more important than a dollar cost, there has also
been an investment in the tools from the standpoint of the
programmers who have been using those tools to develop software. -

These people have already overcome the learning curve with •
respect to how the tools work and are familiar with their
operation. The shortcomings of the tools have probably been
realized and work-arounds developed. The advantages of the tools
have also been seen and worked into each individual's programming
habits. These people have come to expect certain levels of
performance from their tools. This investment should definitely 0
be taken into account by the Z&V plan.", -!

Another side to this issue deals with those users who
currently have just an Ada compiler, but want to build and/or buy
a set of software development tools. Even though the E&V effort
is directly aimed at DoD sponsored environment implementations,
an effort to construct a non-DoD sponsored APSE should be
specifically accommodated. The final E&V plans should include a
set of requirements and/or recommendations for how this kind of
an implementer should proceed and to what standards he must
conform.

The programming support environment which a user builds or
acquires is to assist in the development of software. This
software should be of high quality and should be developed in a
manner which can facilitate the attainment of this quality goal. -
Each APSE site will no doubt have its own ideas about how
software should be developed and will want to obtain tools which
reflect this methodology. Therefore, the harmonious nature of
the APSE becomes an issue. The 16V plan should take into account
bow different software development methods may need to use
different tools and thus propose guidelines as to which methods 0
are best supported by which particular tool characteristics.

Xygluation and !i.. ioi. k L Avionics Oriented APSEs

This issue deals with the requirements for tools in a
specific area of embedded systems applications, that of avionics.
Stoneman [DoD8O discusses what tools should be in an APSE, but - .
exactly how much of the actual specification of tools should be
done in an E&V effort? How much should the area of application
affect the degree of generality which E&V will allow? Once the
toolset has been outlined within the E&V effort, does a specific

K-76

~~~~~~~~~~~~~.... . . ..... :......... . ... .:. . ...... . . . .:. .......-. ...... ".."..."



application such as avionics need any additional clarification,
restrictions, or enhancements to its APSE toolset?

Evaluation is defined in the Ly&iaion and Validation PIla
as assessing the quality of APSE components [AJPO83]. Will this
quality assessment include a test for correctness of a tool?
How deep of a role viii the E&V take with respect to determining
exactly how correct the tools are that viii be used in avionics
software development. For example, if a simulator must be used 0
in order to develop avionics software for a specific contract,
does the simulator itself come under the evaluation and
validation effort?

Software which is developed for avionics embedded systems 0
applications is oftentimes done via the use of cross-compilers.
This introduces another element to consider when setting up
evaluation and validation plans. When validation of a compiler
takes place, it includes both executable and non-executable
tests. When validation of a cross-compiler takes place will it
have to include execution of tests upon the target processor? If 0
so, will this mean that there will be an addition of target-based
testing hardware which must be part of the APSE? Development of
software for embedded computer systems inherently means that this
issue will have to be dealt with during the evaluation and
validation process.

0

The quality of APSE components must be judged in conjunction
with the degree of reliability which these tools give to the
software which they are used to develop. Again, with a simulator
as an example, the reliability of the software depends in part on
how correct the simulator itself is. Problems will occur, .
however, when trying to evaluate or validate tools such as a
simulator which are based on a company proprietary processor
architecture. It would be a large undertaking to make up
evaluation or validation tests for these tools because they are
not of a genera l nature. Those designing the standards or
metrics would need to understand each processor's architecture. 0

* A policy needs to be determined as to what extent these kinds of

Itools will be af fected by APSE R&V.

- Conclusion

K The initial Z&V plan should provide for a toolset which will
assist in the development of embedded systems software and still
provide a pathway for expansion. To assis. in the development
for embedded systems there is a need for the Ear effort to

address the questions of performance and capacity. For some

K-77



embedded systems, the performance of the tools, especially the
compiler, has a marked effect on how vell the development process
progresses. Any of the realized savings on life cycle costs may 0
be facilitated or diminished based on the good or bad performance
of a tool. The question of capacity also has an influence on -

life cycle costs. If the tool cannot handle a particular system
or program size, then its overall benefits need to be -
rea list ica I ly eva luated.

The undertaking of the Z&V task to "develop techniques and
tools to provide a capability to perform assessment of APSEs and
to determine conformance of APSEs to the CAISU IAJPO83] is not
going to be an easy one. In spite of its difficulty, the APSE =.

E&V task is one which should prove beneficial to the embedded S
computer systems community at large. Although there has been
controversy over whether or not the validation suite for the Ads
compilers has been effective enough to help those who do produce
software for embedded computers, there is a chance to avoid this
kind of problem by making certain that the APSE E&V plan
specifically provides for the needs of embedded computer system
developers.

K-.78 .1

.. . . . . . . . .. . . . . . . . . ..



REFERENCES

[AJPO831 --------- -Evaluation and Validation (E&V) Plan,
Version 1.0." Ada Joint Program Office, 30 November
1983.

[Buxt8O] Buxton, J. N. 6 Druffel, L. E., "Requirements for an S
Ads Programming Support Environment: Rationale for
Stoneman," IEEE COPSAC 80, October 1980, pp. 66-72.

[DoD80] ------------ Requirements for Ada Programming Support
Environments, STONEMAN," U. S. Department of Defense, S
February 1980.

[Houg83] Houghton, R., "A Taxonomy of Tool Features for the Ada
Programming Support Environment (APSE)," Ada Letters,
November/December 1983, pp. 69-78. S

[Stan82] Standish, T., "The Importance of Ada Programming Support
Environments," AFIPS Conference Proceedings, 1982
National Computer Conference, June 1982, pp. 333-339.

K-79

K- 79 """'""'

o .. .- . . a-. * SN . . . ... . ... .-.. ... -..,... .h h.. . . .L . A a .. ,.±Z Z . ..... .. .. ,.. .



i

INCREASING APSE CAPABILITIES IMPACT ON E&V

ANDRES RUDMIK
GTE COMMUNICATION SYSTEMS

K.8

. .!



INCREASING APSE CAPABILITIES IMPACT ON E&V

Andres Rudmik

GTE Communication Systems R&D
2500 W Utopia Rd.

Phoenix, Arizona 85027

INTRODUCTION

This paper identifies a basis for APSE E&V and shows how the E&V effort will
increase with increasing APSE complexity. APSEs can range in complexity
from a simple single-user, single-program development environment to a large
scale multi-user, distributed environment. Certainly it seems intuitive
that it will take more effort to evaluate and validate the more complex APS- 0
Es. This paper suggests some basic APSE E&V criteria and shows how this
criteria might be applied to APSEs of varing complexity.

The arguments presented in this paper will be illustrated in terms of a pro-
ject in which we are developing a Distributed Software engineering Control -

Process' (DCP). The DCP is a portable distributed Ada2 programming support 0
environment that provides centralized project management and control facili-
ties integrated with an off-the-shelf Ada compiler and associated develop- '
ment tools. Even though the DCP was not developed on top of the Common APSE
Interface Set (CAIS), we will use the DCP to illustrate how some of the CAIS
interface standards may be validated.

DCP A CASE STUDY

The DCP has a layered architecture as illustrated in Figure K-3. The heart of - -

the DCP is a database that maintains and manages information about the DCP -

users, the objects under development, and the development process. The DCP . S
database can be viewed as a single centrally controlled database containing
all the system wide application information and documentation. All the da- -
tabase accesses will be controlled to ensure consistency of data so that a
DCP user can obtain complete, accurate, and current descriptions of applica-
tions, all their parts and the relationships between their parts.

The DCP development is funded by the WIS JPM Technology Directorate under 0
contract MDA-903-83-C-0202.

2 Ada is a registered trademark of the U.S. Government (Ada Joint Program -

Office).

K-81

) •



USERS TO OTHER
NETWORK NODES

HOST
NETWORK TOOLSET
INTERFACE

DCP
DCP DATABASE TOOLSET

DATABASE INTERFACE

CONFIGURATION MANAGEMENT ADA
COMPILER

USER INTERFACE TOOL INTERFACE

Figure K-3. Layered Architecture of DCP

The database maintains a directory which allows users and tools to refer to
DCP objects in a host transparent manner by maintaining a mapping between
logical and physical file names. The DCP user communicates with the DCP us- -
ing logical file names and invokes DCP tools using these names. The tool
interface is responsible for converting these logical names into physical
file names and then directing the tools to operate on these files. This ap-
proach supports a distributed development environment where the user need
not be concerned with where the files are stored and how they are accessed.

Surrounding the database, there is a portable database interface that allows
the DCP to be ported to other hosts where there may be different but compa-
tible databases. The database interface will provide standard access opera-
tions to all the DCP facilities and tools, and a standard database query in-
terface.

0
On top of the database, we have built a configuration management system to
ensure that all applications and database designs developed using the DCP
are maintained in a consistent form. The design of the configuration man-
agement system uses the database to manage information about the constituent
components of a document or z 1,rogram. Configuration management tools will
allow users to define a configuration, to add components, fetch components, 0
store components, compile programs etc. These tools contain logic to ensure
that the DCP user is performing a valid operation and is not violating the
project development procedures and standards.

K-82

DS

. ... _ . . .. _ i - . " 2 ', ' - -



The outer layer of the DCP provides a portable interface to the DCP users
and the DCP toolset. The user interface supports the use of Ada as a com-
mand language, a full screen menu system, a help facility, and an on-line
documentation capability. Some of the tools are host dependent and will
therefore be different on each host, in which case, the tool interface would
be moditied to accomodate these tools. The DCP user interface to the tool
would remain the same with the only differences occuring when the user is
interacting directly with the tool. Even these difference can be eliminated
in time as portable tools are developed in Ada. A network interface will
allow other DCP development hosts to be interconnected to provide a distri-
buted development capability. The distributed properties of the DCP will be
fully realized when the distributed database capability is available.

Our approach to building the DCP is to maximize the use of off-the-shelf
tools and concentrate our efforts on building an integrated environment by
developing virtual interfaces between the tools, the user, and the DCP data- 0

base. As part of the DCP contract we are to demonstrate the portability of
the DCP by porting the DCP to a different host. This exercise will provide
an opportunity to evaluate the portability of the DCP interfaces and the
toolset.

DCP CONFORMANCE TO ADA S

It is assumed that the DCP will use a validated Ada compiler when one be-
comes available on our development host. The validation of the compiler in
a simplified environment may be inadequate when the same compiler is used in
a sophisticated environment such as the DCP. The Ada Compiler Validation
C&pability (ACVC) is primarily oriented toward the validation of a compilers
comformance to the Ada LRM. This validation procedure does not take into
consideration environmental issues which will also affect the correctness of
the Ada programs. For example, multiple developers working on the same pro-
gram will introduce time dependencies into the APSE's view of the developing
program. It will be the responsibility of the APSE tools to ensure that the
program produced is consistent and correct. 9

An APSE such as the DCP must support the entire software life-cycle ensuring
that the entire product consisting of requirements, design, implementation,
and test plans are developed and maintained in a consistent manner. The DCP
has tools to perform impact analysis on changes to determine the program 0
components that are affected by the change. Furthermore, packages can be
shared between programs such that changes in one program may affect another
program, in which case the APSE must carefully manage the sharing of program
parts. These arguments suggest that one criteria for APSE E&V is its abili-
ty to maintain a consistent and correct representations of Ada programs.

Th7 Ada Compiler is only one of many tools that will be used to support the
ce'.'elopment of Ada programs. The APSE valication procedures must address
-"le ssies of validating all tools that process Ada source, that present in-

* z- using Ada syntax, or generate Ada source. One of the problems

-9
K- 83

9 "



- - - - - -- -. . . . . . . . .

here is that the ACVC may be inappropriate for this validation. For
example, consider a tool that allows the developer to query an Ada program
library to 2isplay Ada data structures. A conceivable validation procedure
wojid be to snow that all data structures displayed conform to the LRDI and
accurately represent the original data structures. Other tools that gener-
ate Ada source text should also be validated to show that the generated code-- -

conforms to the Ada L.P.I.

If the criteria that APSEs must maintain a consistent and correct view of -

Ada programs is to be used in the APSE E&V effort, then it becomes apparent
that as the ways in which Ada text can be created, managed and dispayed in-
creases in complexity so will the APSE E&V. Even though this aspect of the
APSE E&V is related to the ACVC, in most cases, the ACVC facilities cannot
be used directly because of the special nature of the APSE tools (ie. they
do not necessarily process Ada source as input).

DCP PORTABILITY VALIDATION

One of the goals of the DCP project is to produce a portable APSE where re-
hosting the DCP does not require modifications of the DCP toolset, preserves - .
the user interface, and allows the project database to be distributed bet- 0
ween the hosts. Our goal was to port the DCP by just modifying the inter-
face implementation while preserving the interface specification. Figure K-4
illustrates how one could validate the portability of the DCP and show that
the DCP components conform to the virtual interfaces in the different host
environments.

--- Evaluate DCP specification => Evaluation of
against STONEMAN. DCP specification

--- Evaluate DCP validation tests
and procedures against DCP ==> Evaluation of
specifications validation plan

Vo .

1) (DCP) + (DCP validation tests and procedures)
--------------------------------------------- > Validation S

DCP Host Virtual Interface (VAX/VMS) Metrics

2) (DCP) + (DCP validation tests and procedures)
--------------------------------------------- > Validation S

DCP Host Virtual Interface (Other Host) Metrics " "

Figure K-4. E&V of DCP Portability .

K-84

.............................-.. ..... ... .



The E&V of the DCP portability could be done in stages as illustrated in
Figure 2. The first stage is to evaluate the DCP on the existing host show-
ing that the DCP specifications conform to the Stoneman requirements. Next,
the DCP validation tests and procedures must be evaluated to show their ade- 0
quacy in evaluating the DCP components and the entire DCP system. Finally,
the validation tests and procedures would be applied to the DCP on the VAX -:'-
development host. At this point we can derive validation metrics to show
the degree of conformance of DCP to the validation tests. These metrics
would include a measure of successful tests and perhaps a measure of the -
test coverage on the DCP system. 0

In order to validate the DCP portability requirement we would select a
different DCP host and reimplement the DCP interface set on the new host.
The validation of the DCP on this host would then involve the use of the va-
lidation tests and procedures used on the development host and a comparison
of the validation metrics. We would expect a high degree of correlation S
between these metrics on both hosts to demonstrate portability.

In addition to the E&V criteria discussed in this paper we may also want to
consider the following:

1. Measure of project database transportability and database tool inter-
operability.

2. Evaluation of DCP performance on different hosts.

3. Evaluation of DCP robustness.

4. Evaluation of DCP user friendliness.

5. Validation of DCP toolset conformance to the virtual interfaces.

6. Validation of protocols between DCP tools. When is this necessary?
How would this be validated?

7. Evaluation and validation of user interfaces.

8. What about tools that do not use the CAIS?

9. What about tools that are not supportable by the CAIS? •

10. Criteria for evaluating and validating Ada Libraries. Support for
package reusability.

11. Evaluation of development methodologies supported by APSE.

12. Evaluation of APSE support for project management, control, and se- -9
curity.

L%

K-85

is99.. .. . . . . . . .. . . . . . . . . . . . . .

__ _ _ __ _ _ __ _ _ _._o. . j°.x . : *~



ADA PROGRAMMING SUPPORT ENVIRONMENT 0
EVALUATION AND VALIDATION (APSE E&V)

USER INTERFACES AND METHODOLOGY COMPATIBILITY:

TWO FORGOTTEN ISSUES

RAYMOND E. SANDBORGH S
MICHAEL J. MEIRINK
SPERRY CORPORATION

t1m .

a,-S

K-86

,Z-



Position Paper: Ada Programming Support Environment Evaluation and Validation
(APSE E&V) User Interfaces & hlethodology Compatibility:
Two Forgotten Issues.

Sperry Corporation
Raymond E. Sandborgh, Staff Consultant
Michael J. Meirink, Supervising Programmer -

One difficult aspect of developing a position on APSE E&V is selecting an issue

to discuss as there are so many important ones. Table K-Ill is a partial list of
issues. Of all these issues, two have been selected. These issues were choosen
because, 1) it is ditficult to see how to approach a solution to the issue, -

2) the issues are of a broad general nature, 3) each issue is important to the S
E&V process, and 4) we have developed some experience in the issue choosen. All
of the issues in Table 1 are important, we trust, as a result, that others with
different prospectives will choose to take positions on thei. The two we have

selected are: -

1. The problems of describing the user interface in sufficient detail and .

scope to perform systematic comparisons of APSEs. " J

* 2. The degree to which an APSE supports or precludes a specific genera of
methodology, to wit:

a. Rigorous

b. Formal
c. Procedural
d. Heuristic
e. Artistic
f. Ad-Hoc

* In the following section both issues will be described in more detail, an
example of a specific instance will be presented and a potential approach will

be overviewed.

The User Interface 0

According to STONEMAN, one of the goals of an APSE is the creation of a virtual
environment that would allow a programmer to use the same programming language, " .:

Ada and the same commands to access and control computer resources regardless of
hardware. A parallel capability would also be made available to managers, a

constant means of obtaining reports, managing a configuration, etc. for any site .
or project woula be available. The idea was to reduce the amount of information
a person needed to operate the Software Engineering Environment over the long
run, with a single interface. Now, there is no agreement that a single user

* interface is necessary or even desirable. None the less, the question is, "khat
should the APSE user interface look like? (Perhaps, the phrase ... and sound
like ...) should be added, as tone and even speech generators are economically -

rEasonable. K8

|- K-87

.. -.... ..-- *%* -... *.*.-*- 77-L".



7.7

Figure I provides a basic structuring of the user interface domain as a 2x2xn
matrix. This matrix has Target Group as one dimension and Display Variable
Group as the other. The Target Group Dimension is divided into Programmer and
Manager, while the Display Variable Group is divided into formatl and content2 . 0
The third dimension of the matrix is APSE Instances. The matrix aids in the
development of questions such as the following:

o Should any of the APSE content be the same for programmers ana

managers? What is it? Is this content actually the same?

o Should the user have control over the format? (For example, be able
to switch from menu to query to command structure.)

o What are instance differences?

o What is a difference or how close is close enough? S

Let's look at one aspect of the problem.

For the greatest productivity and lowest error rate, should the format for an
APSE be 1) Menu Driven, 2) Query Driven, 3) Command Driven, or 4) User
Selectable among 1, 2, and 3? Should managers and programmers have the same S
format if choice 4 is not selected? It the same format appropriate for all
tasks?

In order to answer these and similar questions, in even a roughly optimal
manner, it is necessary to consider the user, the task, and capabilities of the
computer system (hardware and software). Considering just the user at this time 0
we need a way to describe how sophisticated a user is likely to be as an APSE
user. A basic model for this user characteristic is available from learning -

psychology. This is the skill acquisition model, the stages are:

o Rote - The person can follow correct instructions.

" Novice - The person can work with several specific, isolated Z

capabilities within the context of the system.

" Intermediate - The person can perform identitiable portions of the
task readily, within the context of the system.

o Advanced - The person can use the systems capabilities in novel ways

to solve problems.

o Expert - The person can extend the use of the system into new domains.

Format is the appearance of the display and the mearns to control the disj:la%'-.

appearance, i.e., menu vs command format.

2 Content is the "What does the system. co?, it is the systten's functioi; and p,-r-
f ormanct.

K-88



1) How will an APSE be judged as "complete" and "mature"?

2) How will APSE differences impact acceptance by both users and
validators? (i.e., ALS vs AIE vs ALS/N etc.)

3) What type of validation is appropriate for which parts or features of
the APSE, a validation suite vs some form of utility assessment?

4) To what degree should the APSE be methodology level independent or
specific? 0

5) How will the user interface be described with any degree of precision
and formalism.

6) How will measurement interaction issues such as, one group has

experience with a similar programming support environment and another ]
group doesn't, or the act of measuring will change the group's
performance.

7) Is the system attack proof or secure? How will you tell?

8) How do you separate KAPSE, MAPSE and APSE evaluation? S

9) How do you compare APSE's to each other?

10) How will resource performance be measured?

11) Will such items as nominal and maximum sizes be evaluated, for 0

example, max file size, number and capabilities of terminals?

12) How will a CAIS Validation Suite be created?

13) What information should be subject to APSE validation concern: only
product information or should nonbaseline results, planning data,
people/computer resources be included?

14) The problems oi describing the user interface in sufticient detail and
scope to perform systematic comparisons of APSEs.

15) The degree to which an APSE supports or precludes a specific genera of S
methodology, to wit:

a. Rigorous

b. Formal
c. Procedural

d. Heuristic
e. Artistic
f. Ad-Hoc

16) How valid and reliable is the work of thc evaluator/validator?

Table K-4. Issues in APSE E&V

K-89

: _~~~...... '-....-'.... -.-... .. •--.'..-......... .--.... -...-. ,,,.-......... .-..... ,,-..,



Figure K-5 provides a basic structuring of the user interface domain as a 2x2xn
matrix. This matrix has Target Group as one dimension and Display Variable
Group as the other. The Target Group Dimension is divided into Programmer and
Manager, while the Display Variable Group is divided into format1 and content2. 6
The third dimension of the matrix is APSE Instances. The matrix aids in the
development of questions such as the following:

o Should any of the APSE content be the same for programmers and ..-.-

managers? What is it? Is this content actually the same?

0 Should the user have control over the format? (For example, be able

to switch from menu to query to command structure.)

0 What are instance differences?

o What is a difference or how close is close enough? 0

Let's look at one aspect of the problem.

For the greatest productivity and lowest error rate should the format for an

APSE be 1) Menu Driven, 2) Query Driven, 3) Command Driven, or 4) User .
Selectable among 1, 2, and 3? Should managers and programmers have the same n
format, if choice 4 is not selected? It the same format appropriate for all

tasks?

In order to answer these and similar questions, in even a roughly optimal

manner, it is necessary to consider the user, the task and capabilities of the
computer system (hardware and software). Considering Just the user at this time _ .
we need a way to describe how sophisticated a user is likely to be as an APSE
user. A basic model for this user characteristic is available from learning
psychology. This is the skill acquisition model, the stages are:

o Rote - The person can follow correct instructions. -

o Novice - The person can work with several specific, isolated

capabilities within the context of the system.

o Intermediate - The person can perform identifiable portions of the
task readily, within the context of the system.

o Advanced - The person can use the systems capabilities in novel ways
to solve problems.

o Expert - The person can extend the use of the system into new domains.

1 Format is the appearance of the display and the means to control the display's

appearance, i.e., menu vs command format.

2 Content is the "What does the systec do?, it is the system's function and per- - 0

formance.

K-90

. . . . .'... . . . . . . .



-nth nd INSTANCE

F
()
R

A0
T

Display
Variable
Group

C
0S
N
T
E
N
T

PROGRAMMER MANAGER

TARGET GROUP

Figure K-5. User Interface Domain Structure for APSE E&V

K-91I



L _-_ _ _ _ _ _ _ _ _ _ _ _ __._ _ __-_ __-_-._ __-_ _ __-_._-_ _-._ _ _

The factors in determining into which category a user belongs are interaction
mode, object generalizability, operation generalizability, preplanning, chunk
size, and chunking approach. 0

These categories are further defined as follows:

o Mode of Interaction

- passive
- reactive

- active

o Object Generalizability
- concrete

- superordinate-extended .
o Operation Generalizability -

- independent
- combinatorial
- extended

o Preplanning
- informal

- formal
- predictive

o Chunk Size
- character

- item
- statement
- procedure

o Chunk Approach
- pass ive ''"' "

informal
-formal

These variables are used to define a user state, initially this is all zeros but
ones appear as competency develops. The transition from rote to novice to
intermediate to advanced to expert is a series of thresholds. The fit of inter-
face to a user group can be evaluated using this approach. On Figure K-5 this

approach provices an evaluative uethod for one variable value - program format. . .

Three other evalvative methods need to be developed.

The point is, the most explicit, replicable and cost effective models need ... .

to be used and are in some part available for evaluation and validation of the
human interface in APSEs.

Software Engineering Methodology and the APSE

According to STONEMAN, level 3 APSEs are: -S

Ada Program Support Environments (APSLs) which are constructed b) exten-
sions of the ?iAPSL to provide fuller support ox paszicular applications or
methodoloies."

K-92

.... .... ... ... * 2-7*



However, neither level 1, KAPSE nor level 2, MAPSE definitions have any methodo-
logical content. For these portions of the APSE, it is clear that methodology ___.- _

must not be prevented. Yet, no active support is required. Some form of eva- •
luation, perhaps a check list for each of several methodologies, with and
without tool support, would suffice from a methodological perspective.

We have found it useful to think of "types of methodologies" by which we mean
the way a methodology varies on key characteristics such as:

o The problem domain or environment of the methodology

- the body of content or application the methodology must address
- the set of audiences skilled in interacting with the methodology
- the outcomes ti be achieved

o How competent the persons working with the methodology are in the use

of the methodology.

o How easily the methodology is evaluated in a public manner

0 How clear the information requirements are, both in a particular
activity and between two or more activities.

Using these variables, the following methodology types have proved useful.

1) Ad Hoc Methodologies - This is a trial and error approach. To some
degree work cannot be planned in advance as it is based upon Immedi- 5
ately prior results.

2) Artistic Methodologies - Depend upon the skill of a master programmer.

The broad routines can be described, but actual execution is dependent
almost totally upon skill level of the staff.

3) Heuristic Methodologies - Here the major ways of approaching a problem
and a variety of specific techniques are well articulated. Closing 7
criteria are missing or if present are partly or wholly arbitrary.

4) Procedural - The process is explicitly articulated. It identifies the
major steps (perhaps substeps also), the information handled at each
step, key measures and metrics, and completion and quality criteria. - -

The intent is to influence the order in which decisions are made and
to improve visibility and control over the process.

5) Formal Methodologies - These methodologies use notations with a defi-
nite syntax and a partially defined semantics but the meaning applied
to the same is somewhat arbitrary. The syntax is itself formally
defined, i.e., by a Bachus - Naur representation, or syntax charts.

6) Rigorous Methodologies - Are those formal methodologies which have

precise conceptual meaning, due to a mathematical base such as Petri
Nets or Finite State Machines, and which have sufficient operational
definitions to allow emperical validation of constructs and their
representations.

K-93

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .



Furthermore, from a user's viewpoint, all of these software development
methodology types have these key components:

Notations: - language used to describe the system to be developed.
Methods: - techniques to develop and to determine the development's

compliance to criteria.
Tools - automated support for handling notations and for

encouraging/enforcing methods.
Procedures - written description of the proper use of notations, methods, and

tools.

There are several motivations for raising this issue:

(1) STONEMAN expects to support methodologies: "Ada Program Support
Environment (APSEs) which are constructed by extensions of the hAPSE to
provide fuller support of particular applications or methodologies."
Concern for the disciplined use of the APSE motivated the METHODMAN effort.

(2) Organizations will strive to improve visibility and control over the soft-
ware development process. That is, the entire process must not be totally

* ad hoc or artistic. The process must be appropriate to the task. Each ot
the methodology types have an appropriate use--innovation (artistry must
not be stifled), some processes can be mechanized (procedural, formal,
rigorous). Productivity gains can be achieved by improving tool capability
and increasing tool use.

(3) Interest in the front end of the software life cycle is high. The majority 0
of errors occur then; the later they are detected, the more costly they are
to repair. Many have developed or are developing tools to support an "Ada
Program Design Language". A major toolset under the auspices of the Joint
Services Software Engineering Environment (JSSEE) Committee is the
Distributed Computing Design System (DCDS). The Army CECOM has contracted
the development of methodologies whose notation for requirements specifica- a
tion and design is pure Ada (Ada Formulation Methods Study). These
methodologies promote the notion of merging the process of conceiving
(creating) the design with the process of recording it. The latter two are
examples of rigorous approaches. A key issue which emerges is what infor-
mation beyond Ada is needed to describe design? Today, contractors must
look beyond tools written in Ada or conforming to a CAIS interface.

From a buyer's viewpoint, the key questions are:

(1) Can this APSE support my methodology?

(2) What tools are available to support a methodology?

(3) Is this methodology and its supporting toolset applicable to my problem (or
project)?

K-94

. _ .- * .

* * * ..;.- . .: :*.. .- .. : . -. .. ... . . .. ..



(4) What are the workproducts of the methodology?

It is important to recognize that tools may be integrated with respect to other
tools (i.e., program callable interfaces to the database or inter-tool data),
with respect to the user interface, or with respect to a methodology. Thus, 0

tools used in the context of a methodology may comprise an integrated set
regardless of other aspects of integration.

The crucial question is "What is needed to evaluate the suitability of an APSE
to one or more methodologies?" APSE support for methodologies cannot be
meaningfully evaluated by microscopic analysis of tools and their interfaces.
There are, however, several reasonable approaches which can be taken;

(1) Identify information items and questions which could serve as a basis to
begin evaluation;

(2) Develop benchmark problems for industry or academia to use to exercise
methodologies and their toolsets;

(3) Issue guidelines for conducting data-gathering exercises. The guidelines
should address controls, transition between tools and methodology tasks,
errors, tool and people performance, and analysis of results.

The following strategies and criteria are recommended for evaluation:

C1) A tool (or toolset) said to support a methodology should supply the

following information:

(a) Description of the methods suggested via an explanation of the
analysis techniques, underlying formal foundation, and rationale.

(b) Definition of the notation supported--
(i) Formal Definition (syntax and semantics)
(ii) Cite and explain Ada compatibility

a. Notation is a subset of Ada--identify exclusions;
b. Notation is a subset of Ada plus extensions--identify

exclusions and extensions;
c. Notation is a subset of Ada--identify extensions;
d. Notation is not Ada-based--if applicable, explain mapping to

Ada.

(c) Describe toolset capability--inputs, outputs, functions, manuals, etc.

(d) Provide procedures (layer by detail)--
(i) Overview:
(ii) Heuristic (major process steps);
(iii) Procedural.

(2) To evaluate the productivity of using an APSE environment according to sum
methodology, E&V should consider:

K-95

• °".........'" .o i
o
.--.......- o'....".° . . ....................



[ (a) Methodology and APSE support for controlling the development;

(b) Definition of errors:

(c) Size and complexity of the application problem;

(d) Level of training;

(e) Data-gathering and analysis techniques;

(f) Number of participants.

It is worth noting that METHODAIAN passes the eight questions for conducting
experiments even though the guidelines chosen appear to be consistently
flawed.

(3) To evaluate the extensibility and flexibility of an APSE in supporting

multiple methodologies, E&V should consider the following for multiple pro-
jects or methodologies:

(a) How easily is the notation tuned?

(b) How easily can the decision rules encouraged by the toolset be tuned?

(c) How easily are the procedures altered?

(4) To assess the ease of transitioning across tasks or phases, E&V should -

consider: .

(a) lnformation passed (to next phase);

(b) Information saved (as history, hidden);

(c) Information sunk (no longer needed;

(d) Information lost (should hae been passed).

(e) Activities (actions) interacting among phases.

This entire discussion is rather abstract, due not only to space limitations but
also to the lack of a body of knowledge about this topic. For example, it would
be useful to have experimental data that compared:

o 2 APSES (e.g., Rohm vs. TeleSoft)
o 2 Problems (e.g., C&C vs. ATC)
o 2 Methodologies (e.g., "ARMY CECOM Ada Integrated Methodology" vs.

"DDS").

Even careful work on the design of such an experiment, with the associated•
"thought experiment" work and directed literature research such a design entails
would produce useful insight. A final comment is in order. None of tnis
discussion directly addresses evaluating (or validatinb,) conforance to a CAlb.

K-96

.L- ' ' "-..•. .> -.i >- -,' . >..-~ i>.- " ..," ',.i-'> '> '." . . . .-- .. - '.'- '. . --'. . ."-. . .--. '- '. -, - -- , ,



-A151 6U9 EVALUATION AND VALIDATION (ESY) TEAM PUBLIC REPORT 616
VOLUME 1(U) AIR FORCE WRIGHT AERONAUTICAL LABS
URIGHT-PATTERSON AFB OH V L CASTOR 3B NOV B4

UNCLASSIFIED AFNAL-TR-95-i0iG-VOL-i F/G 14/2 N

EEEEEEEni



e.

111110 1. 2 .02

oWE

L~'11112I~ 6l !!ii

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

~b

b _

* o *

...-- ..... .... ..... .. *. v--a- -- 
°



7S

The reason for this is simple. A CAIS is one solution to the problem of port-
able software. Others are known to exist (UNIX, for example). As a result it
is not critical to have a CAIS to achieve the productivity and quality increases
which are the main thrust of the Ada effort. Of course, it is necessary to have a .
CAIS in order to validate conformance to a CAIS. But the practical issue in
APSE E V is which APSE, if any, is most likely to be best suited to my project
(or procurement) objectives and the type of methodology that is going to be used ".-
by my performing agency (or contractor).

K-97 0

• . -- .

.............................................. . .. .



COM PRE HENSIVE SOFTWARE DEVELOPMENT ENVIRONMENTS

PAUL SCHEFFER
MARTIN MARIETTA DENVER AEROSPACE

X-98



r

APSE Evaluation &Validation Workshop

Position Paper

Comprehensive Software Development Environments

March 1984

Paul Scheffer

Computer Systems Technology

MIS 0421

Martin Marietta Denver Aerospace

P~.O. Box 179 Denver, Colorado -

K-99



COMPREHENSIVE SOFTWARE DEVELOPMENT ENVIRONMENT

Martin Marietta Denver Aerospace initiated intensive research in software

* engineering methods, techniques, and tools in 1976. Throughout the evolution

- of our current capability we have studied individual tools, methods, procedure

integration techniques, automated documentation schemes, and software --

management problems and solutions. Our hard earned understanding of the 0

criticality of the man-machine interface component of successful software

tools, and more recently, viable tool systems was not achieved without

discovering the pitfalls to be avoided. Early developments of large tool

schemes which combined complex model based specification methods with

elaborate command languages, not only resulted in burdensome resource

consumption from data manipulation and structuring, but produced packages of

such complexity that user acceptance was precluded. Training times from such

approaches are so extensive that staff acceptance and simple usability become

overwhelming managerial and educational problems. An obvious counteraction to _.

the development of large, complex tool systems is an approach wherein small,

definitive scope tools of limited capability attack specific life-cycle

problems. A great intuitive appeal is associated with such schemes, but

utility is typically limited to a very small part of the development

* spectrum. Hence the concept of user-friendly, tailorable systems which can be

adapted to specific project needs is a central theme in current requirements

for development environments. Interface "friendliness" of the support

environment arises from the use of good editors, command style, and

informative diagnostics. Adaptability of the support environment is addressed

by provision for common language processing which supports a variety of user

oriented specification languages within a single architecturally consistent

framework.

A major conclusion of our software engineering, experience is that development

environments such as an APSE must be usage and procedure oriented. This means

that the techniques for using the development system, for manipulating its

features, adding new capabilities and most importantly for representing its

capabilities to the user, are more important than individual tools. While it .-. .

K-100-. . .

... ... ... .. ... ... ... .. ... ... ... ..



- ~~~ * ..... *. ~ ~ ~ ~ ~ . . . . . . . . . . . . . . . .. . . . . . . . . . . -.

is true that the end utility programs accomplish the actual work of individual

development aids, it is the framework of the environment that provides the

control aspects. Hence file naming conventions, data base access techniques,
0

command language or menu style, and system access structures which address

multiple user classes determine the control procedures of environment

" operation. Consequently, the simple integration of plug-in tool components

will not satisfy the spirit of support environment requirements.

Two critical aspects are missing in the plug-in concept: communication and

extensibility. In systems as comprehensive as those to be dealt with in an

APSE, multiple levels of users (managers, designers, programmers,

administrators, etc.) demand a variety of communication levels to accommodate 6
the multiple levels of expression represented in life cycle information

constructs (requirements, structural design, behavioral design, logical

design, program packages, data structures, etc.). A rich environment control

structure which not only supports this concept but anticipates the need for -.

future change is required. This leads to the second aspect, extensibility.

The control process nature of the support environment will not be static - -

because the dynamics of DoD applications and operations require a system which

can respond to changes in organizational elements, and technology

developments. The simple integration concept of "plug in" components cannot

accommodate such needs because it is only extendable in the simplest of ways,

namely the addition of individual tools.

In 1984 a Comprehensive Software Development Environment (CSDE) project was

initiated at Martin Marietta. This project focuses previous research on

methods, techniques, and tools for software system developments. The project

will be developing a unified software, hardware, office facility, and data .

base management environment for use on Martin Marietta software development

efforts. The CSDE concept was developed under the influence of the Ada

STONEMAN and "METHODHAN" efforts.

The Martin Marietta view considers a proper Support Environment as a

superstructure synergistically integrating present technological capabilities ; "

K-101



while providing for change. Our approach with our own prototype environment

concentrates on the environment control layer and its interfaces to the user

community and host architecture. Individual tools are provided to process

specific life-cycle phase data. These tools accommodate existing technologies

particularly in the areas of high level specification languages, code

transformation and maintenance. Moreover, emerging technology is also -"

provided for, particularly with respect to Ada. Our concept recognizes the

importance of Ada in the institutional processes relative to life-cycle

economics. Hence the impact of Ada will be most apparent in the command

language style of the Support Environment as well as the human interface

aspect derived from the node model of the Common Ada program support

environment Interface Set (CAIS).

Historical Perspective

In our software engineering research efforts at Martin Marietta we are

currently building this prototype software development environment consisting

of an integrated set of tools directed to supporting the full software life

cycle from requirements to maintenance. Our approach to this activity has

evolved after several years of research and development addressing software

engineering problems, surveying and evaluating state-of-the-art efforts, and

building experimental tools on an individual basis. A major effort to date

was the establishment of the HEDSys concept. MEDSys stands for "Multilevel

Expression Design System", and attempts to comply with a set of high level

specification aid requirements that we defined.

o Any successful support scheme will be an integrated set of

(independent) tools which reflect the interactive nature of -

designing. Concepts phrased in relatively high levels of

abstraction are incrementally refined into statements of -

increasing specificity.

o Really successful tools must either be very simple to use and .

understand, or be firmly couched in an established methodology

K-102

*-].o2...................

- ' .*. .. ..... ...... . ... lul........ II..... ...



apart from an automated representation.

o Computer aided tools are primarily directed to the process of

software development, interim products being secondary and not a

goal in and of themselves.

MEDSys was designed around three specification languages and their associated .

processors and analyzers, each of which can be used independently or in

concert. The first two (requirements and structural design) were effectively

accomplished by early 1979.

Each MEDSys component operates as an interactive system, driven by its own

design data base. Once a design data base has been built, subsequent analysis

processors can be called upon for evaluating the information accumulated -

tantamount to automatically producing quality metrics. With multiple data

bases, each representing a successive stage in the development life cycle,

simple correlations on such quality metrics quickly evaluate their predictive

accuracy.

In conjunction with this research and development effort, an auxiliary =

activity implemented a tool called the Automated Structured Analysis Processor

(ASAP) which supports design in the Yourdan/DeMarco vein by formalizing the

Data Flow Diagram and Process Description techniques with a specification -

language and corresponding data bases (data dictionary and "mini-spec"). .

Unlike MEDSys, ASAP is methodology specific.

We are now involved in the practical CSDE effort to further integrate these

tools using the motivation of STONEHAN/AIE. In establishing this tool

environment, we have investigated as many known similar efforts as possible,

* including:

o CSDP for RADC by CSC

o JSS for RADC/AFWAL by General Dynamics

o J73PSL for USAF/ASD by Softech

K-103 I/



o Army ALS and Air Force APSE by Sof tech and Intermetrics

o ESPRESSO for NRC, Karlsruhe (Germany) by Ludevig &Eckert

o ISIS f or NASA/LaRC by J. Berman (U of VA)

Additional influence on this effort stems from our ongoing Ada technology and -

training program coupled with our past Involvement in the ALS and APSE

contract evaluations and evaluation of the CAIS specification.

K-104



0

EVALUATING APSE EFFECTIVENESS EN
DEVELOPING SOFTWARE

JAMES WINCHESTER
HUGHES AIRCRAFT COMPANY

K-105



APSE E&V WORKSHOP

EVALUATING APSE EFFECTIVENESS IN

DEVELOPING SOFTWARE

by

Dr. James Winchester

Hughes Aircraft Company
P.O. Box 3310/618-M215

Fullerton, CA 92634

April 1984

K-106



N - _-.."- .

APSE EVALUATION & VALIDATION (E & V) POSITION STATEMENT

Issue

The APSE E & V Task incluler providinq a means to evaluate
the effectiveness of the Usei/APSE Interface.

An issue is whether this evaluation should include just
application mechanics (e.g., ease of use, performance) or also
evaluate the advantages of applying the APSE in terms of improve-
ments in software productivity or quality. The E & V Task should
provide a means to evaluate the overall effectiveness of applying
an APSE.

A central focus of the Ada language and its associated
support environment (APSE) is the perceived software development
productivity and quality gains that can be realized in using such
a system. An APSE can be considered as a collection of tools that
support specification, design, and implementation techniques across
the software development life cycle, from requirements definition
through testing and maintenance.

The application of each tool to the software engineering
job can provide some incremental improvement in productivity and
quality.

The functional interaction between the APSE tools could
create an environment that increases total productivity and
quality improvements beyond a simple sum of incremental tool
application improvements (the tools work together smoothly).
Conversely, the functional interaction between the APSE tools
could result in total productivity and quality improvements that
are less than what would be expected from summing incremental
tool application improvements.

Providing a means to evaluate the overall effectiveness of
applying an APSE requires:

(1) a framework for evaluating life cycle phase
unique transition techniques and the functional
completeness of an APSE.

(2) a procedure and criteria for determining the
advantages (e.g., productivity, higher S
reliability) of applying the APSE.

(3) a procedure and criteria for determing the cost
of applying the APSE.

.K-107

•0

" -. -' '-.. -< ..- . . . . -i " "i' °.--
* . - - . -. . . - . • .-K . . -- o



Transition Framework

A possible framework for evaluating the efficiency and
effectiveness of transitioning between APSE tools is described
in the following section.

As shown in Table K-5, a software development methodology 0
consistsof four related components: (1) a notation (graphic
and textual) for representing the information required in the
engineering activities during the phases of software development
(requirements, design, etc.), (2) analysis techniques to determine
the development information's level of compliance to certain desired
criteria (e.g., completeness of requirements, consistency of design 0
to requirements), (3) tools (particularly computer-aided) to
support the manipulation of the notation and provide algorithmic
checks for the analysis techniques, and (4) procedures to guide
proper use of the notation, analysis techniques, and tools in
moving from software requirements to implementation.

Most methodologies have concentrated on one phase of the
software development life cycle, resulting in a set of unique
notations, analysis techniques, tools and procedures. Complete
software development life cycle methodologies can be created by
integrating the phase unique methodologies via one or more
components (see Table K-6). S

The easiest type of integration is achieved through defining
a comprehensive set of procedures that explains how to sequence a
set of phase unique methodologies to achieve a complete methodology.
With this type of integration, the engineer must understand many
different notations and analysis techniques as well as use a S
noncohesive set of tools.

A further degree of integration is to link the computer-aided
tools into a more cohesive set. This involves creating a common
user interface and translation software to move information from
one tool's database to another. Extended integration reduces the
amount of time engineers need to complete their software development.

The most extensive type of methodology integration is achieved
by developing notation and analysis techniques that can be applied
across all software development phases. Given that such a canonical
notation and analysis technique is defined, tools and procedures 5
can be developed that are smoothly interfaced.

K-108

| 0



TABLE K-5. SOFTWARE METHODOLOGY COMPONENTS

Methodology Component Example

e Notation - Data Flow Diagram
- Structure Chart

e Analysis Technique - Data Flow Analysis
- Structure Chart Analysis

* Automated Tools - Automated Specification Analysis
Tool (ASAT)

- Automated Interactive Design
Evaluation System (AIDES)

e Procedures - Structured Analysis and "
Structured Design Procedures

TABLE K-6. POSSIBLE APPROACHES TO INTEGRATING METHODOLOGY
COMPONENTS ACROSS LIFE CYCLE PHASES

Approach Example Advantage 0

* Notational/Analysis
Techniques

- Comprehensive and co- - System Architect Apprentice - Easy to learn and apply
hesive notation analysis (SARA) - Most efficient type of 0
techniques that can be - Integrated Definition (IDEF) complete methodology, but
used across all phases methodology of the Integrated requires significant modifi-
of the engineering life Computer Aided Mnu- cation to existing engineer-
cycle facturing (CAM) Project Ing practice

* Automated Tools

- Develop software to - Analysis and Design Interface - More efficient and effec-
translate information Transforms (ADIT) which link tive than procedure only
from one tool's database a data flow tool (ASAT) to a integration
to another structured design tool (AIDES) .

9 Procedural

- Construct comprehen- Integrated Software Develop- - Relatively easy to
sive procedures to link ment Methodology (ISDM) develop
complete set of notation/ Guidebook
techniques/tools

K-109



APSE Application Advantages Procedure and Criteria

The APSE application advantages procedure could include
establishing standard software development "problems" to be
specified, designed, implemented, tested etc., using the APSE
under evaluation. If standard problems were defined to cover a
wide variety of software applications (e.g., command and control,
data base processing) then APSE evaluators could choose those
most appropriate for their own domain.

Data could be collected during this APSE application,
* including such factors as number and type of errors surfaced,
* errors created during development phase transitions, and final

software performance.

APSE Application Cost Procedure and Criteria

Procedures could be defined for collecting relevant cost
* data during APSE application to a standard evaluation problem.

These data could include level of effort to transition information
from the output of one phase unique tool to another, tool perform-
ance characteristics and hardware support requirements.

Summary

For the foreseeable future, there will be no consensus
among users as to what unique set of tools will comprise an APSE.
The E & V Task must address the issue of how to determine the
overall effectiveness of an APSE in supporting the software
development activities and not simply evaluating tool application -

* mechanics.

0

K-l10
I SAMM? PlICS PMI im S3.OO?/1117

esabisin st.......o.w. r deeomn*polmt e....... . . .. .
specified, designe.,.mplemented,.tested.e................•



FILMED

65-85

DTIC


